Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T07:14:03.420Z Has data issue: false hasContentIssue false

Globular clusters in the near–infrared

Published online by Cambridge University Press:  21 October 2010

E. Valenti
Affiliation:
ESO – European Southern Observatory, Av. Alonso de Cordova, 3107 Casilla 19001, Santiago, CHILE Pontificia Universidad Catolica de Chile, Departamento de Astronomia y Astrofisica, Av. Vicuña Mackenna 4860, 782–0436 Macul, Santigo, CHILE
L. Origlia
Affiliation:
INAF – Osservatorio Astronomico di Bologna, Via Ranzani, 1, 40127 Bologna, ITALY
R. M. Rich
Affiliation:
Department of Physics and Astronomy, Math–Sciences 8979, UCLA, Los Angeles CA90095–1562, USA
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study of Globular Cluster (GC) stellar populations (SPs) addresses fundamental astrophysical questions ranging from stellar structure, evolution and dynamics, to Galaxy formation. Indeed, they represent: i) fossils from the remote and violent epoch of Galaxy formation, ii) test particles for studying Galaxy dynamics and stellar dynamical model, and iii) fiducial templates for studying integrated light from distant stellar systems. In particular, high resolution spectroscopy of GC SPs provides abundance patterns which are crucial for understanding the formation and chemical enrichment time–scale of the host galaxy. Here the major results on Galactic GCs based on high-resolution near-infrared (near–IR) spectroscopy are briefly reviewed. Optical and IR spectroscopy are complementary tools to investigate SPs in different environments, the latter being more suitable in the case of moderately–high extinction regions (AV≥2) and high metallicity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Lecureur, A., Hill, V., Zoccali, M., et al. 2007, A&A 465, 799LGoogle Scholar
Melendez, J., Barbuy, B. & Spite, F. 2001, ApJ 556, 858CrossRefGoogle Scholar
Origlia, L., Rich, M. R. & Castro, S. 2002, AJ 123, 1590CrossRefGoogle Scholar
Origlia, L. & Rich, M. R. 2004, AJ 127, 3422CrossRefGoogle Scholar
Origlia, L., Valenti, E. & Rich, M. R. 2005, MNRAS 356, 1276CrossRefGoogle Scholar
Origlia, L., Valenti, E., Rich, M. R., Ferraro, F. R. 2005, MNRAS 363, 879CrossRefGoogle Scholar
Origlia, L., Valenti, E. & Rich, M. R. 2008, MNRAS 388, 1419CrossRefGoogle Scholar
Rich, R. M. & Origlia, L. 2005, ApJ 634, 1293CrossRefGoogle Scholar
Rich, R. M., Origlia, L. & Valenti, E. 2007, ApJ 665, 119CrossRefGoogle Scholar
Smith, V. V., Terndrup, D. M. & Suntzeff, N. B. 2002, ApJ 579, 832CrossRefGoogle Scholar
Smith, V. V., Cunha, K., Ivans, I. I., et al. 2005, ApJ 633, 392CrossRefGoogle Scholar
Yong, D., Melendez, J., Cunha, K., et al. 2008, ApJ 689, 1020CrossRefGoogle Scholar
Zoccali, M., Lecureur, A., Barbuy, B., et al. 2006, A&A 457, L1Google Scholar