Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T02:11:32.940Z Has data issue: false hasContentIssue false

Globular clusters and their link with stellar populations in the Milky Way

Published online by Cambridge University Press:  11 March 2020

David Yong*
Affiliation:
Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of stellar chemical compositions enable us to identify connections between globular clusters and stellar populations in the Milky Way. In particular, chemical abundance ratios provide detailed insight into the chemical enrichment histories of star clusters and the field populations. For some elements, there are striking differences between field and cluster stars which reflect different nucleosynthetic processes and/or chemical evolution. The goal of this talk was to provide an overview of similarities and differences in chemical compositions between globular clusters and the Milky Way as well as highlighting a few areas for further examination.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

An, D., Beers, T. C., Johnson, J. A., et al. 2013, ApJ, 763, 65CrossRefGoogle Scholar
Bekki, K. & Freeman, K. C. 2003, MNRAS, 346, L11CrossRefGoogle Scholar
Charbonnel, C., Chantereau, W., Krause, M., Primas, F., & Wang, Y. 2014, A&A, 569, L6Google Scholar
Cunha, K., Smith, V. V., Suntzeff, N. B., et al. 2002, AJ, 124, 379CrossRefGoogle Scholar
Da Costa, G. S., Norris, J. E., & Yong, D. 2013, ApJ, 769, 8CrossRefGoogle Scholar
Da Costa, G. S. 2016, The General Assembly of Galaxy Halos: Structure, Origin and Evolution, 317, 110Google Scholar
D’Antona, F., Vesperini, E., D’Ercole, A., et al. 2016, MNRAS, 458, 2122CrossRefGoogle Scholar
Forbes, D. A. & Bridges, T. 2010, MNRAS, 404, 1203Google Scholar
Gratton, R. G., Carretta, E., & Bragaglia, A. 2012, A&ARvr, 20, 50Google Scholar
Harris, W. E. 1996, AJ, 112, 1487CrossRefGoogle Scholar
Johnson, C. I. & Pilachowski, C. A. 2010, ApJ, 722, 1373CrossRefGoogle Scholar
Kraft, R. P. 1994, PASP, 106, 553CrossRefGoogle Scholar
Kruijssen, J. M. D. 2019, MNRAS, 486, L20CrossRefGoogle Scholar
Lee, Y. S., Beers, T. C., An, D., et al. 2011, ApJ, 738, 187CrossRefGoogle Scholar
Lee, Y.-W., Kim, J. J., Johnson, C. I., et al. 2019, ApJ, 878, L2CrossRefGoogle Scholar
Lehnert, M. D., Bell, R. A., & Cohen, J. G. 1991, ApJ, 367, 514CrossRefGoogle Scholar
Lind, K., Koposov, S. E., Battistini, C., et al. 2015, A&A, 575, L12Google Scholar
Marino, A. F., Yong, D., Milone, A. P., et al. 2018, ApJ, 859, 81CrossRefGoogle Scholar
Meléndez, J. & Cohen, J. G. 2007, ApJ, 659, L25CrossRefGoogle Scholar
Ness, M., Freeman, K., Athanassoula, E., et al. 2013, MNRAS, 430, 836CrossRefGoogle Scholar
Nissen, P. E. & Schuster, W. J. 2010, A&A, 511, L10Google Scholar
Norris, J. E. & Da Costa, G. S. 1995, ApJ, 447, 680CrossRefGoogle Scholar
Norris, J. E., Wyse, R. F. G., Gilmore, G., et al. 2010, ApJ, 723, 1632CrossRefGoogle Scholar
Placco, V. M., Frebel, A., Beers, T. C., & Stancliffe, R. J. 2014, ApJ, 797, 21CrossRefGoogle Scholar
Schiavon, R. P., Zamora, O., Carrera, R., et al. 2017, MNRAS, 465, 501CrossRefGoogle Scholar
Smith, V. V., Cunha, K., Ivans, I. I., et al. 2005, ApJ, 633, 392CrossRefGoogle Scholar
Sneden, C., Kraft, R. P., Shetrone, M. D., et al. 1997, AJ, 114, 1964CrossRefGoogle Scholar
Yong, D., Meléndez, J., Cunha, K., et al. 2008, ApJ, 689, 1020CrossRefGoogle Scholar