Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T00:10:16.506Z Has data issue: false hasContentIssue false

Globular cluster tidal interactions and mergers in the Galactic disc

Published online by Cambridge University Press:  11 March 2020

Alessandra Mastrobuono-Battisti
Affiliation:
Max-Planck-Institut für Astronomie Königstuhl 17, D-69117, Heidelberg, Germany email: [email protected]
Sergey Khoperskov
Affiliation:
Max-Planck-Institut für extraterrestrische Physik Gießenbachstrasse 1, 85748 Garching, Germany Institute of Astronomy, Russian Academy of SciencePyatnitskaya st., 48, 119017 Moscow, Russia
Paola Di Matteo
Affiliation:
GEPI Observatoire de Paris, PSL Research University, CNRSPlace Jules Janssen, F-92195 Meudon Cedex, France
Misha Haywood
Affiliation:
GEPI Observatoire de Paris, PSL Research University, CNRSPlace Jules Janssen, F-92195 Meudon Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Galactic globular cluster system went and is still going through dynamical processes that require to be explored in detail. Here we illustrate how primordial massive globular clusters born in the Milky Way’s disc evolved by stripping material from each other or even merging very early during their lives. These processes might explain the puzzling presence of star-by-star spreads in iron content observed in massive globular clusters and should be taken into account when studying globular cluster stellar populations. In this context, we show how the direct comparison between the predictions provided by our direct N-body simulations and observations can shed light on the origin and chemo-dynamical evolution of globular clusters.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Allen, C. & Santillan, A. 1991, RMxAA, 22, 255Google Scholar
Antonini, F., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., & Merritt, D. 2012, ApJ, 750, 111CrossRefGoogle Scholar
Bastian, N. & Lardo, C. 2018, A&ARr, 56, 83Google Scholar
Bekki, K. & Tsujimoto, T. 2016, ApJ, 831, 70CrossRefGoogle Scholar
Bianchini, P., van der Marel, R. P., del Pino, A., Watkins, L. L., Bellini, A., Fardal, M. A., Libralato, M., & Sills, A. 2018, MNRAS, 481, 2125CrossRefGoogle Scholar
Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., & Maschietti, D. 2011, New Astron., 16, 284CrossRefGoogle Scholar
Ferraro, F. R., Massari, D., Dalessandro, E., et al. 2016, ApJ, 828, 75CrossRefGoogle Scholar
Gavagnin, E., Mapelli, M., & Lake, G. 2016, MNRAS, 461, 1276CrossRefGoogle Scholar
Gratton, R. G., Carretta, E., & Bragaglia, A. 2012, A&ARr, 20, 50Google Scholar
Harris, W. E. 1996, AJ, 112, 1487CrossRefGoogle Scholar
Johnson, C. I. & Pilachowski, C. A. 2010, ApJ, 722, 1373CrossRefGoogle Scholar
Khoperskov, S., Mastrobuono-Battisti, A., Di Matteo, P., & Haywood, M. 2018, A&A, 620, A154Google Scholar
King, I. R. 1966, AJ, 71, 64CrossRefGoogle Scholar
Marino, A. F., Milone, A. P., Karakas, A. I., et al. 2015, MNRAS, 450, 815CrossRefGoogle Scholar
Marino, A. F., Yong, D., Milone, A. P., et al. 2018, ApJ, 859, 81CrossRefGoogle Scholar
Mastrobuono-Battisti, A. & Perets, H. B. 2013, ApJ, 779, 85CrossRefGoogle Scholar
Mastrobuono-Battisti, A. & Perets, H. B. 2016, ApJ, 823, 61CrossRefGoogle Scholar
Mastrobuono-Battisti, A., Khoperskov, S., Di Matteo, P., & Haywood, M. 2019, A&A, 622, A86Google Scholar
Meylan, G. 1987, A&A, 184, 144Google Scholar
Pouliasis, E., Di Matteo, P., & Haywood, M. 2017, A&A, 598, A66Google Scholar
Renzini, A., et al. 2015, MNRAS, 454, 4197CrossRefGoogle Scholar