Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T06:20:26.619Z Has data issue: false hasContentIssue false

Global simulations of stellar dynamos

Published online by Cambridge University Press:  24 September 2020

G. Guerrero*
Affiliation:
Physics Department, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dynamo mechanism, responsible for the solar magnetic activity, is still an open problem in astrophysics. Different theories proposed to explain such phenomena have failed in reproducing the observational properties of the solar magnetism. Thus, ab-initio computational modeling of the convective dynamo in a spherical shell turns out as the best alternative to tackle this problem. In this work we review the efforts performed in global simulations over the past decades. Regarding the development and sustain of mean-flows, as well as mean magnetic field, we discuss the points of agreement and divergence between the different modeling strategies. Special attention is given to the implicit large-eddy simulations performed with the EULAG-MHD code.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Antia, H. M. & Basu, S. 2001, ApJL, 559, L67CrossRefGoogle Scholar
Augustson, K., Brun, A. S., Miesch, M., & Toomre, J. 2015, ApJ, 809, 149CrossRefGoogle Scholar
Baliunas, S. L., Donahue, R. A., Soon, W. H., et al. 1995, ApJ, 438, 269CrossRefGoogle Scholar
Benomar, O., Bazot, M., Nielsen, M. B., et al. 2018, Science, 361, 1231CrossRefGoogle Scholar
Böhm-Vitense, E. 2007, ApJ, 657, 486CrossRefGoogle Scholar
Bonanno, A. 2013, Sol. Phys., 287, 185CrossRefGoogle Scholar
Bonanno, A. & Urpin, V. 2012, ApJ, 747, 137CrossRefGoogle Scholar
Bonanno, A. & Urpin, V. 2013, ApJ, 766, 52CrossRefGoogle Scholar
Böning, V. G. A., Roth, M., Jackiewicz, J., & Kholikov, S. 2017, ApJ, 845, 2CrossRefGoogle Scholar
Brandenburg, A., Mathur, S., & Metcalfe, T. S. 2017, ApJ, 845, 79CrossRefGoogle Scholar
Brandenburg, A., Rädler, K. H., & Schrinner, M. 2008, A&A, 482, 739Google Scholar
Brandenburg, A., Saar, S. H., & Turpin, C. R. 1998, ApJL, 498, L51CrossRefGoogle Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2010, ApJ, 711, 424CrossRefGoogle Scholar
Browning, M. K., Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJL, 648, L157CrossRefGoogle Scholar
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ, 614, 1073CrossRefGoogle Scholar
Brun, A. S., Miesch, M. S., & Toomre, J. 2011, ApJ, 742, 79CrossRefGoogle Scholar
Brun, A. S., Strugarek, A., Varela, J., et al. 2017, ApJ, 836, 192CrossRefGoogle Scholar
Brun, A. S. & Toomre, J. 2002, ApJ, 570, 865CrossRefGoogle Scholar
Cally, P. S. 2003, MNRAS, 339, 957CrossRefGoogle Scholar
Cossette, J.-F., Charbonneau, P., Smolarkiewicz, P. K., & Rast, M. P. 2017, ApJ, 841, 65CrossRefGoogle Scholar
Elliott, J. R. & Smolarkiewicz, P. K. 2002, International Journal for Numerical Methods in Fluids, 39, 855CrossRefGoogle Scholar
Fan, Y. & Fang, F. 2014, ApJ, 789, 35CrossRefGoogle Scholar
Featherstone, N. A. & Miesch, M. S. 2015, ApJ, 804, 67CrossRefGoogle Scholar
Ferreira, R. R., Barbosa, R., Castro, M., et al. 2020, Submited to A&A, doi:10.1051/0004-6361/201937219CrossRefGoogle Scholar
Gastine, T., Yadav, R. K., Morin, J., Reiners, A., & Wicht, J. 2014, MNRAS, 438, L76CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. 1991, Physics of Fluids, 3, 1760CrossRefGoogle Scholar
Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P. K. 2010, ApJL, 715, L133CrossRefGoogle Scholar
Gilman, P. A. 1977, Geophysical and Astrophysical Fluid Dynamics, 8, 93CrossRefGoogle Scholar
Gilman, P. A. 1983, ApJs, 53, 243CrossRefGoogle Scholar
Gilman, P. A. & Miller, J. 1981, ApJ, 46, 211Google Scholar
Glatzmaier, G. A. 1984, Journal of Computational Physics, 55, 461CrossRefGoogle Scholar
Glatzmaier, G. A. 1985a, ApJ, 291, 300CrossRefGoogle Scholar
Glatzmaier, G. A. 1985b, Geophysical and Astrophysical Fluid Dynamics, 31, 137CrossRefGoogle Scholar
Gregory, S. G., Donati, J.-F., Morin, J., et al. 2012, ApJ, 755, 97CrossRefGoogle Scholar
Grinstein, F., Margolin, L., & Rider, W. 2007, Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics (Cambridge University Press)Google Scholar
Guerrero, G., Del Sordo, F., Bonanno, A., & Smolarkiewicz, P. K. 2019a, MNRAS, 490, 4281CrossRefGoogle Scholar
Guerrero, G., Smolarkiewicz, P. K., de Gouveia Dal Pino, E. M., Kosovichev, A. G., & Mansour, N. N. 2016a, ApJ, 819, 104CrossRefGoogle Scholar
Guerrero, G., Smolarkiewicz, P. K., de Gouveia Dal Pino, E. M., Kosovichev, A. G., & Mansour, N. N. 2016b, ApJL, 828, L3CrossRefGoogle Scholar
Guerrero, G., Smolarkiewicz, P. K., Kosovichev, A. G., & Mansour, N. N. 2013, ApJ, 779, 176CrossRefGoogle Scholar
Guerrero, G., Zaire, B., Smolarkiewicz, P. K., et al. 2019b, ApJ, 880, 6CrossRefGoogle Scholar
Haugen, N. E., Brandenburg, A., & Dobler, W. 2004, Phys. Review, 70, 016308Google Scholar
Haugen, N. E. L. & Brandenburg, A. 2006, Physics of Fluids, 18, 075106CrossRefGoogle Scholar
Held, I. M. & Suarez, M. J. 1994, Bulletin of the American Meteorological Society, 75, 18252.0.CO;2>CrossRefGoogle Scholar
Hotta, H., Rempel, M., & Yokoyama, T. 2016, Science, 351, 1427CrossRefGoogle Scholar
Howard, R. & Labonte, B. J. 1980, ApJL, 239, L33CrossRefGoogle Scholar
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., & Uno, A. 2003, Physics of Fluids, 15, L21CrossRefGoogle Scholar
Käpylä, P. J., Korpi, M. J., Brandenburg, A., Mitra, D., & Tavakol, R. 2010, Astronomische Nachrichten, 331, 73CrossRefGoogle Scholar
Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2012, ApJL, 755, L22CrossRefGoogle Scholar
Käpylä, P. J., Mantere, M. J., Guerrero, G., Brandenburg, A., & Chatterjee, P. 2011, A&A, 531, A162Google Scholar
Karak, B. B., Käpylä, P. J., Käpylä, M. J., et al. 2015, A&A, 576, A26Google Scholar
Karak, B. B., Kitchatinov, L. L., & Choudhuri, A. R. 2014, ApJ, 791, 59CrossRefGoogle Scholar
Kövári, Z., Oláh, K., Kriskovics, L., et al. 2017, Astronomische Nachrichten, 338, 903CrossRefGoogle Scholar
Kitchatinov, L. L. 2013, in IAU Symposium, Vol. 294, Solar and Astrophysical Dynamos and Magnetic Activity, ed. Kosovichev, A. G., de Gouveia Dal Pino, E., & Yan, Y., 399410Google Scholar
Kosovichev, A. G. & Schou, J. 1997, ApJL, 482, L207CrossRefGoogle Scholar
Lehtinen, J., Jetsu, L., Hackman, T., Kajatkari, P., & Henry, G. W. 2016, A&A, 588, A38Google Scholar
Liang, Z.-C., Gizon, L., Birch, A. C., Duvall, T. L., & Rajaguru, S. P. 2018, A&A, 619, A99Google Scholar
Margolin, L. G. 2019, Shock Waves, 29, 27CrossRefGoogle Scholar
Margolin, L. G. & Rider, W. J. 2002, International Journal for Numerical Methods in Fluids, 39, 821CrossRefGoogle Scholar
Masada, Y., Yamada, K., & Kageyama, A. 2013, ApJ, 778, 11CrossRefGoogle Scholar
Matilsky, L. I., Hindman, B. W., & Toomre, J. 2019, ApJ, 871, 217CrossRefGoogle Scholar
Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ, 641, 618CrossRefGoogle Scholar
Miesch, M. S., Gilman, P. A., & Dikpati, M. 2007, ApJ, 168, 337Google Scholar
Miesch, M. S. & Hindman, B. W. 2011, ApJ, 743, 79CrossRefGoogle Scholar
Moffatt, H. K. 1978, Magnetic field generation in electrically conducting fluidsGoogle Scholar
Noyes, R. W., Weiss, N. O., & Vaughan, A. H. 1984, ApJ, 287, 769CrossRefGoogle Scholar
Olspert, N., Lehtinen, J. J., Käpylä, M. J., Pelt, J., & Grigorievskiy, A. 2018, A&A, 619, A6Google Scholar
Parker, E. N. 1955, ApJ, 122, 293CrossRefGoogle Scholar
Passos, D., Miesch, M., Guerrero, G., & Charbonneau, P. 2017, A&A, 607, A120Google Scholar
Pipin, V. V. & Kosovichev, A. G. 2018, ApJ, 854, 67CrossRefGoogle Scholar
Pitts, E. & Tayler, R. J. 1985, MNRAS, 216, 139CrossRefGoogle Scholar
Pouquet, A., Frisch, U., & Leorat, J. 1976, Journal of Fluid Mechanics, 77, 321CrossRefGoogle Scholar
Prusa, J. M., Smolarkiewicz, P. K., & Wyszogrodzki, A. A. 2008, Comput. Fluids, 37, 1193CrossRefGoogle Scholar
Racine, É., Charbonneau, P., Ghizaru, M., Bouchat, A., & Smolarkiewicz, P. K. 2011, ApJ, 735, 46CrossRefGoogle Scholar
Reinhold, T. & Gizon, L. 2015, A&A, 583, A65Google Scholar
Ruediger, G. 1989, Differential rotation and stellar convection. Sun and the solar starsGoogle Scholar
Saar, S. H. & Brandenburg, A. 1999, ApJ, 524, 295CrossRefGoogle Scholar
Schad, A., Timmer, J., & Roth, M. 2013, ApJL, 778, L38CrossRefGoogle Scholar
Schou, J., Antia, H. M., Basu, S., et al. 1998, ApJ, 505, 390CrossRefGoogle Scholar
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., & Christensen, U. 2005, Astronomische Nachrichten, 326, 245CrossRefGoogle Scholar
Simard, C., Charbonneau, P., & Bouchat, A. 2013, ApJ, 768, 16CrossRefGoogle Scholar
Smagorinsky, J. 1963, Monthly Weather Review, 91, 992.3.CO;2>CrossRefGoogle Scholar
Smolarkiewicz, P. K. 2006, International Journal for Numerical Methods in Fluids, 50, 1123CrossRefGoogle Scholar
Smolarkiewicz, P. K. & Charbonneau, P. 2013, J. Comput. Phys., 236, 608CrossRefGoogle Scholar
Spitzer, L. 1962, Physics of Fully Ionized GasesCrossRefGoogle Scholar
Spruit, H. C. 2002, A&A, 381, 923Google Scholar
Steenbeck, M., Krause, F., & Rädler, K.-H. 1966, Zeitschrift Naturforschung Teil A, 21, 369CrossRefGoogle Scholar
Stix, M. 1976, in IAU Symposium, Vol. 71, Basic Mechanisms of Solar Activity, ed. Bumba, V. & Kleczek, J., 367CrossRefGoogle Scholar
Strugarek, A., Beaudoin, P., Charbonneau, P., & Brun, A. S. 2018, ApJ, 863, 35CrossRefGoogle Scholar
Strugarek, A., Beaudoin, P., Charbonneau, P., Brun, A. S., & do Nascimento, J.-D. 2017, Science, 357, 185CrossRefGoogle Scholar
Tayler, R. J. 1973, MNRAS, 161, 365CrossRefGoogle Scholar
Vidotto, A. A., Gregory, S. G., Jardine, M., et al. 2014, MNRAS, 441, 2361CrossRefGoogle Scholar
Viviani, M., Warnecke, J., Käpylä, M. J., et al. 2018, A&A, 616, A160Google Scholar
Vorontsov, S. V., Christensen-Dalsgaard, J., Schou, J., Strakhov, V. N., & Thompson, M. J. 2002, Science, 296, 101CrossRefGoogle Scholar
Warnecke, J. 2018, A&A, 616, A72Google Scholar
Warnecke, J., Käpylä, P. J., Käpylä, M. J., & Brandenburg, A. 2014, ApJL, 796, L12CrossRefGoogle Scholar
Warnecke, J., Rheinhardt, M., Tuomisto, S., et al. 2018, A&A, 609, A51Google Scholar
Wright, N. J. & Drake, J. J. 2016, Nature, 535, 526CrossRefGoogle Scholar
Wright, N. J., Drake, J. J., Mamajek, E. E., & Henry, G. W. 2011, ApJ, 743, 48CrossRefGoogle Scholar
Yoshimura, H. 1975, ApJ, 201, 740CrossRefGoogle Scholar
Zahn, J.-P., Brun, A. S., & Mathis, S. 2007, A&A, 474, 145Google Scholar
Zhao, J., Bogart, R. S., Kosovichev, A. G., Duvall, T. L. Jr., & Hartlep, T. 2013, ApJL, 774, L29CrossRefGoogle Scholar