Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T22:45:28.307Z Has data issue: false hasContentIssue false

Generic inference of inflation models by local non-Gaussianity

Published online by Cambridge University Press:  01 July 2015

Sebastian Dorn
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany email: [email protected]
Erandy Ramirez
Affiliation:
Instituto de Ciencias Nucleares, UNAM A. Postal 70-543, Mexico D.F. 04510, Mexico
Kerstin E. Kunze
Affiliation:
Departamento de Física Fundamental and IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
Stefan Hofmann
Affiliation:
Arnold Sommerfeld Center for Theoretical Physics, Ludwigs-Maximilians-Universität München, Theresienstraße 37, D-80333 Munich, Germany
Torsten A. Enßlin
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany email: [email protected] Ludwigs-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The presence of multiple fields during inflation might seed a detectable amount of non-Gaussianity in the curvature perturbations, which in turn becomes observable in present data sets like the cosmic microwave background (CMB) or the large scale structure (LSS). Within this proceeding we present a fully analytic method to infer inflationary parameters from observations by exploiting higher-order statistics of the curvature perturbations. To keep this analyticity, and thereby to dispense with numerically expensive sampling techniques, a saddle-point approximation is introduced whose precision has been validated for a numerical toy example. Applied to real data, this approach might enable to discriminate among the still viable models of inflation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

WMAP Collaboration 2013a, APJS 208 20, arXiv:astro-ph/1212.5225Google Scholar
Planck Collaboration 2013b, arXiv:astro-ph/1303.5076Google Scholar
Planck Collaboration 2013, arXiv:astro-ph/13035084Google Scholar
Enßlin, T. A., Frommert, M., & Kitaura, F. S. 2011, Phys. Rev. D 80 105005, arXiv:astro-ph/0806.3474CrossRefGoogle Scholar
Dorn, S., Oppermann, N., Khatri, R., & Enßlin, T. A. 2013a, Phys. Rev. D 88 103516, arXiv:astro-ph/1307.3884Google Scholar
Dorn, S., Ramirez, E., Kunze, K. E., Hofmann, S., & Enßlin, T. A. 2014, arXiv:astro-ph/1403.5067CrossRefGoogle Scholar
Dorn, S., Oppermann, N., & Enßlin, T. A. 2013b, Phys. Rev. E 88 053303, arXiv:astro-ph/1307.3889CrossRefGoogle Scholar
Planck Collaboration 2013c, arXiv:astro-ph/1303.5082Google Scholar
Bartolo, N. & Liddle, A. R. 2002, Phys. Rev. D 65 121301, arXiv:astro-ph/0203076CrossRefGoogle Scholar
Sasaki, M., Väliviita, J., & Wands, D. 2006, Phys. Rev. D 74 103003, arXiv:astro-ph/0607627CrossRefGoogle Scholar