Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T07:29:55.208Z Has data issue: false hasContentIssue false

Gaussian pulse propagation in coronal loops

Published online by Cambridge University Press:  01 September 2007

César A. Mendoza-Briceño
Affiliation:
Centro de Física Fundamental, Facultad de Ciencias, Universidad de los Andes, Merida-Venezuela email: [email protected]
Leonardo Di G. Sigalotti
Affiliation:
Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Física, Laboratorio de Física de Fluidos y Plasmas, Caracas-Venezuela email: [email protected]
Jordan A. Guerra
Affiliation:
Universidad de Carabobo, Facultad de Ciencias y Tecnología, Departamento de Física, Valencia-Venezuela email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the linear evolution of a Gaussian pulse injected at different locations along a one-dimensional (1D), hot (T ≥ 6.3 MK) coronal loop, including the dissipative effects of thermal conduction, viscosity, heating, and radiative cooling. We consider both homogeneous and stratified loops of different lengths (50 ≤ L ≤ 400 Mm) and values of the pulse width (or standard deviation, βg/L) between 0.005 and 0.02. We find that a Gaussian velocity pulse can generate propagating waves whose amplitudes increase with increasing width of the pulse. The shape of the waves is quite irregular owing to the superposition of the several harmonics composing the Gaussian pulse. Wave damping due to the combined effects of thermal conduction and viscosity is faster in the shortest and hottest loops. The decay times and periods of the waves are within the observed values of decaying modes of hot SUMER loop oscillations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Banerjee, D., Erdélyi, R., Oliver, R., O'Shea, E. 2007, Sol. Phys., 246, 3CrossRefGoogle Scholar
Bradshaw, S. J. and Erdélyi, R., 2007 Astron. Astrophys, submittedGoogle Scholar
Braginskii, S. I. 1965, Rev. Plasma Phys., 1, 205Google Scholar
De Moortel, I., Ireland, J., Walsh, R. W. & Hood, A. W. 2002, Solar Phys., 209, 61CrossRefGoogle Scholar
De Moortel, I., & Hood, A. W. 2003, A&A, 408, 755Google Scholar
Hildner, E. 1974, Solar Phys., 35, 23CrossRefGoogle Scholar
Sigalotti, L. Di G., Mendoza-Briceño, C. A., & Luna-Cardozo, M. 2006, Solar Phys., in pressGoogle Scholar
Taroyan, Y., Erdélyi, R., Wang, T. J. & Bradshaw, S. J. 2007 ApJ 659, L173CrossRefGoogle Scholar