Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T15:19:40.509Z Has data issue: false hasContentIssue false

The gas structure of the HD 163296 planet-forming disk - gas gaps or not?

Published online by Cambridge University Press:  12 October 2020

C. Rab
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, the Netherlands email: [email protected]
G. A. Muro-Arena
Affiliation:
Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
I. Kamp
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, the Netherlands email: [email protected]
C. Dominik
Affiliation:
Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
L. B. F. M. Waters
Affiliation:
Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands SRON Netherlands, Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands
W-F. Thi
Affiliation:
MPE, Giessenbachstrasse 1, 85748 Garching, Germany
P. Woitke
Affiliation:
SUPA, School of Physics & Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

HD 163296 is a young star surrounded by a planet-forming disk that shows clear signatures of dust gaps and rings; likely an indication of ongoing planet formation. We use the radiation thermochemical disk code ProDiMo to investigate the impact of dust/gas gaps on the temperature, chemistry and observables. Furthermore, we model high spatial resolution gas and dust observation of HD 163296 (ALMA/DSHARP). Our first results indicate that features in the observed radial intensity profile of the 12CO line are a consequence of the dust gaps and do not require gas depletion. Those preliminary results indicate that self-consistent modelling of the gas (chemistry, heating/cooling) and dust is necessary to accurately infer the degree of gas depletion within dust gaps. Such information is crucial to understand the processes that generate the disk substructure and their relation to planet formation.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Andrews, S. M., Huang, J., Pérez, L. M. et al. 2018, ApJ, 869, L41 CrossRefGoogle Scholar
Birnstiel, T., Andrews, S. M., Pinilla, P. et al. 2015, ApJ, 813CrossRefGoogle Scholar
Facchini, S., Pinilla, P., van Dishoeck, E. F. et al. 2018, A&A, 612, A104 Google Scholar
Flock, M., Ruge, J. P., Dzyurkevich, N. 2015, A&A, 574Google Scholar
Isella, A., Huang, J., Andrews, S. M. et al. 2018, ApJ, 869, L49 10.3847/2041-8213/aaf747CrossRefGoogle Scholar
Liu, S.-F., Jin, S. and Li, S. et al. 2018, ApJ, 857, 87 10.3847/1538-4357/aab718CrossRefGoogle Scholar
Muro-Arena, G. A., Dominik, C., Waters, L. B. F. M. et al. 2018, A&A, 614, A24 Google Scholar
Pinilla, P., Pohl, A., Stammler, S. M. et al. 2017, ApJ, 845Google Scholar
van der Marel, N., Williams, J. P., & Bruderer, S. 2018, ApJ, 867, L14 CrossRefGoogle Scholar
Woitke, P., Kamp, I., Antonellini, S. et al. 2019, PASP, 131, 064301 CrossRefGoogle Scholar
Woitke, P., Min, M., Pinte, C. et al. 2016, A&A, 586, A103 Google Scholar
Zhang, S., Zhu, Z., Huang, J. et al. 2018, ApJL, 869, L47 Google Scholar