Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T09:59:30.231Z Has data issue: false hasContentIssue false

The Gas Phase in a Low Metallicity ISM

Published online by Cambridge University Press:  01 June 2008

Elias Brinks
Affiliation:
Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB, UK
Se–Heon Oh
Affiliation:
Research School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611, Australia
Ioannis Bagetakos
Affiliation:
Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB, UK
Frank Bigiel
Affiliation:
Max–Plank–Institut für Astronomie, Königstuhl 17, 69117, Heidelberg, Germany
Adam Leroy
Affiliation:
Max–Plank–Institut für Astronomie, Königstuhl 17, 69117, Heidelberg, Germany
Antonio Usero
Affiliation:
Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB, UK
Fabian Walter
Affiliation:
Max–Plank–Institut für Astronomie, Königstuhl 17, 69117, Heidelberg, Germany
W. J. G. de Blok
Affiliation:
Univ. of Cape Town, Dept. of Astronomy, Private Bag X3, Rondebosch 7701, South Africa
Robert C. Kennicutt Jr.
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present several results from our analysis of dwarf irregular galaxies culled from The HI Nearby Galaxy Survey (THINGS). We analyse the rotation curves of two galaxies based on “bulk” velocity fields, i.e. velocity maps from which random non–circular motions are removed. We confirm that their dark matter distribution is best fit by an isothermal halo model. We show that the star formation properties of dIrr galaxies resemble those of the outer parts of larger, spiral systems. Lastly, we study the large scale (3–D) distribution of the gas, and argue that the gas disk in dIrrs is thick, both in a relative, as well as in an absolute sense as compared to spirals. Massive star formation through subsequent supernova explosions is able to redistribute the bulk of the ISM, creating large cavities. These cavities are often larger, and longer–lived than in spiral galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bagetakos, I., Brinks, E., Walter, F., de Blok, W. J. G., Rich, J. W., Usero, A., & Kennicutt, R.C. Jr., 2008, AJ (submitted)Google Scholar
Begum, A., Chengalur, J. N., & Karachentsev, I. D. 2005, A&A, 433, L1Google Scholar
Begum, A., Chengalur, J. N., Karachentsev, I. D., Kaisin, S. S., & Sharina, M. E. 2006, MNRAS, 365, 1220CrossRefGoogle Scholar
Begum, A., Chengalur, J. N., Karachentsev, I. D., Sharina, M. E., & Kaisin, S. S. 2008, MNRAS, 386, 1667CrossRefGoogle Scholar
Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J.G., Madore, B., & Thornley, M.D. 2008, AJ (submitted)Google Scholar
Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F., & Blitz, L. 2008, astro–ph/0807.0009Google Scholar
Brinks, E., Walter, F., & Ott, J. 2002, ASP Conf. Proc., 275, 57Google Scholar
Carignan, C. & Freeman, K. C. 1988 ApJ Lett., 332, L33CrossRefGoogle Scholar
Chevalier, R. A. 1974, ApJ, 188, 501CrossRefGoogle Scholar
de Blok, W. J. G. & Bosma, A. 2002, A&A, 385, 816Google Scholar
de Blok, W. J. G. & Walter, F. 2006, AJ, 131, 363CrossRefGoogle Scholar
de Blok, W. J. G., Walter, F., Brinks, E., Trachternach, C., Oh, S.-H., & Kennicutt, R.C. Jr., 2008, AJ (accepted)Google Scholar
Dunne, B. C., Points, S. D., & Chu, Y.-H. 2001, ApJS, 136, 119CrossRefGoogle Scholar
Ferrara, A. & Tolstoy, E. 2000, MNRAS, 313, 291CrossRefGoogle Scholar
Gil de Paz, A., et al. 2007, ApJS, 173, 185CrossRefGoogle Scholar
Hoffman, G. L., Salpeter, E. E., & Carle, N. J. 2001, AJ, 122, 2428CrossRefGoogle Scholar
Kennicutt, R. C. 1989, ApJ, 344, 685CrossRefGoogle Scholar
Kennicutt, R. C. 1998, ApJ, 498, 541CrossRefGoogle Scholar
Kennicutt, R. C. Jr., et al. 2003, PASP, 115, 928CrossRefGoogle Scholar
Kim, S, Dopita, M. A., Staveley–Smith, L.,& Bessell, M. S. 1999 AJ, 118, 2797CrossRefGoogle Scholar
Leroy, A., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., & Thornley, M.D. 2008 AJ (accepted)Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563CrossRefGoogle Scholar
Oh, S.-H., de Blok, W. J. G., Walter, F., Brinks, E., & Kennicutt, R. C. Jr., 2008, AJ (accepted)Google Scholar
Ott, J., Walter, F., & Brinks, E. 2005, MNRAS, 358, 1453CrossRefGoogle Scholar
Oey, M. S. & Clarke, C. J. 1997, MNRAS, 289, 570CrossRefGoogle Scholar
Puche, D., Westpfahl, D., Brinks, E., & Roy, J.-R. 1992, AJ, 103, 1841CrossRefGoogle Scholar
Silich, S. A. & Tenorio–Tagle, G. 2001, ApJ, 552, 91CrossRefGoogle Scholar
Taylor, C. L. 1997, ApJ, 480, 524CrossRefGoogle Scholar
Taylor, C. L., Kobulnicky, H. A., & Skillman, E. D. 1998 AJ, 116, 2746CrossRefGoogle Scholar
Taylor, E. N. & Webster, R. L. 2005 ApJ, 634, 1067CrossRefGoogle Scholar
Walter, F. & Brinks, E. 1999, AJ, 118, 273CrossRefGoogle Scholar
Walter, F., Brinks, E., de Blok, W. J. G., Bigiel, F., Kennicutt, R. C. Jr., Thornley, M. D., & Leroy, A. 2008, AJ (accepted)Google Scholar
Young, L. M. & Lo, K. Y. 1996, ApJ, 462, 203CrossRefGoogle Scholar
Young, L. M. & Lo, K. Y. 1997, ApJ, 490, 710CrossRefGoogle Scholar
Young, L. M., van Zee, L., Lo, K. Y., Dohm–Palmer, R. C., & Beierle, M. E. 2003, ApJ, 592, 111CrossRefGoogle Scholar