Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T07:23:14.731Z Has data issue: false hasContentIssue false

Gamma Ray Bursts Spectral–Energy correlations: recent results

Published online by Cambridge University Press:  24 February 2011

Giancarlo Ghirlanda*
Affiliation:
Osservatorio Astronomico di Brera, Via Bianchi 46 Merate I–23807Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The correlations between the rest frame peak of the νFν spectrum of GRBs (Epeak) and their isotropic energy (Eiso) or luminosity (Liso) could have several implications for the understanding of the GRB prompt emission. These correlations are presently founded on the time–averaged spectral properties of a sample of 95 bursts, with measured redshifts, collected by different instruments in the last 13 years (pre–Fermi). One still open issue is wether these correlations have a physical origin or are due to instrumental selection effects. By studying 10 long and 14 short GRBs detected by Fermi we find that a strong time–resolved correlation between Epeak and the luminosity Liso is present within individual GRBs and that it is consistent with the time–integrated correlation. This result is a direct proof of the existence in both short and long GRBs of a similar physical link between the hardness and the luminosity which is not due to instrumental selection effects. The origin of the EpeakLiso correlation should be searched in the radiation mechanism of the prompt emission.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Amati, L., Frontera, F., Tavani, M. et al. , 2002, A&A, 390, 81Google Scholar
Amati, L., Frontera, F., & Guidorzi, C., 2009, A&A, 508, 173Google Scholar
Band, D. L. & Preece, R., 2005, ApJ, 627, 319CrossRefGoogle Scholar
Bosnjak, Z., Celotti, A., Longo, F., et al. , 2008, MNRAS, 384, 599CrossRefGoogle Scholar
Butler, N. R., Kocevski, D., Bloom, J. S., & Curtis, J. L., 2007, ApJ, 671, 656CrossRefGoogle Scholar
Butler, N. R., Kocevski, D., & Bloom, J. S., 2009, ApJ, 694, 76CrossRefGoogle Scholar
Ghirlanda, G., Ghisellini, G., & Celotti, A., 2004, A&A, 422, L55Google Scholar
Ghirlanda, G., Ghisellini, G., & Lazzati, D., 2004, ApJ, 616, 331CrossRefGoogle Scholar
Ghirlanda, G., Ghisellini, G., Firmani, C., Celotti, A., & Bosnjak, Z., 2005, MNRAS, 360, 45CrossRefGoogle Scholar
Ghirlanda, G., Nava, L., Ghisellini, G., Firmani, C., & Cabrera, J. I. 2008, MNRAS, 387, 319CrossRefGoogle Scholar
Ghirlanda, G., Nava, L., Ghisellini, G., et al. , 2009, A&A, 496, 585Google Scholar
Ghirlanda, G., Nava, L. & Ghisellini, G., 2010 A&A, 511, 43Google Scholar
Ghirlanda, G., Ghisellini, G., Nava, L., Burlon, D., 2010a arXiv:1008.4767Google Scholar
Krimm, H. A., Yamaoka, K., Sugita, S., et al. , 2009, arXiv0908.1335Google Scholar
Nakar, E. & Piran, T., 2005, MNRAS, 360, L73CrossRefGoogle Scholar
Nava, L., Ghirlanda, G., Ghisellini, G., & Firmani, C., 2008, MNRAS, 391, 639CrossRefGoogle Scholar
Shahmoradi, A. & Nemiroff, R. J., 2009, arXiv0904.1464Google Scholar
Yonetoku, D., Murakami, D., Nakamura, T., et al. , 2004, ApJ, 609, 935CrossRefGoogle Scholar