Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T22:56:50.175Z Has data issue: false hasContentIssue false

GAMA: The effect of environment on galaxy emission line properties

Published online by Cambridge University Press:  17 July 2013

Oliver Steele
Affiliation:
Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, UK email: [email protected]
Daniel Thomas
Affiliation:
Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, UK email: [email protected]
Claudia Maraston
Affiliation:
Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, UK email: [email protected]
James Etherington
Affiliation:
Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the influence of environment on emission line properties using the Galaxy And Mass Assembly (GAMA) survey, taking care to disentangle the role of mass and environment. We look at the role of local density separating galaxies into classifications star forming, AGN, and SF/AGN composite using the BPT diagnostic diagram. We find that environment is generally less important as a driving factor than galaxy mass. The presence of emission lines, whether driven by star formation or central supermassive black hole activity mostly depends on galaxy mass consistently for all galaxy types.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5Google Scholar
Bundy, K.et al. 2006, ApJ, 651, 120Google Scholar
Calzetti, D. 2001, PASP, 113, 1449Google Scholar
Cappellari, M. & Emsellem, E. 2004, PASP, 116, 138Google Scholar
Dressler, A. 2000, ApJ 236 351365CrossRefGoogle Scholar
Driver, S. P.et al. 2011, MNRAS, 413, 971CrossRefGoogle Scholar
Hopkins, A. M.et al. 2013, MNRAS, 430, 2047Google Scholar
Kauffman, G., et al. 2003, MNRAS, 346, 1055CrossRefGoogle Scholar
Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., & Trevena, J. 2001, ApJ, 556, 121CrossRefGoogle Scholar
Maraston, C., Nieves Colmenárez, L., Bender, R., & Thomas, D. 2009, A&A, 493, 425Google Scholar
Maraston, C. & Strömbäck, G. 2011, MNRAS, 418, 2785CrossRefGoogle Scholar
Mendes de Oliviera, C., Coelho, P., González, J. J., & Barbuy, B. 2005, AJ, 130, 55Google Scholar
Oemler, A. Jr. 1974, ApJ 194 120CrossRefGoogle Scholar
Peng, Y.-J.et al. 2010, ApJ, 721, 193CrossRefGoogle Scholar
Rodríguez-Merino, L. H., Chavez, M., Bertone, E., & Buzzoni, A. 2005, ApJ, 626, 411Google Scholar
Sánchez Blázquez, P., Gorgas, J., Cardiel, N., & González, J. J. 2006, A&A, 457, 809Google Scholar
Sarzi, M.et al. 2006, MNRAS, 366, 1151Google Scholar
Schawinski, K.et al. 2007, ApJS, 173, 512Google Scholar
Schawinski, K., Thomas, D., Sarzi, M., Maraston, C., Kaviraj, S., Joo, S.-J, Yi, S. K., & Silk, J. 2007, MNRAS, 382, 1415Google Scholar
Thomas, D., Maraston, C., Schawinski, K., Sarzi, M., & Silk, J. 2010, MNRAS, 404, 1775Google Scholar
Thomas, D., Steele, O., & Maraston, C., et al. 2013, MNRAS, 431, 1383Google Scholar
Trager, S. C., Faber, S. M., Worthey, G., & González, J. J. 2000, AJ, 120, 165Google Scholar
Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295CrossRefGoogle Scholar
Wake, D., Collins, C. A., Nichol, R. C., Jones, L. R., & Burke, D. J. 2005, ApJ, 627, 186Google Scholar