Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T17:59:43.595Z Has data issue: false hasContentIssue false

Galaxy simulations in the Gaia era

Published online by Cambridge University Press:  07 March 2018

Ivan Minchev*
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We live in an age where an enormous amount of astrometric, photometric, asteroseismic, and spectroscopic data of Milky Way stars are being acquired, many orders of magnitude larger than about a decade ago. Thanks to the Gaia astrometric mission and followup ground-based spectroscopic surveys in the next 5-10 years about 10-20 Million stars will have accurate 6D kinematics and chemical composition measurements. KEPLER-2, PLATO, and TESS will provide asteroseismic ages for a good fraction of those. In this article we outline some outstanding problems concerning the formation and evolution of the Milky Way and argue that, due to the complexity of physical processes involved in the formation of disk galaxies, numerical simulations in the cosmological context are needed for the interpretation of Milky Way observations. We also discuss in some detail the formation of the Milky Way thick disk, chemodynamical models, and the effects of radial migration.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Freeman, K. & Bland-Hawthorn, J., 2002, ARAA, 40, 487 CrossRefGoogle Scholar
Steinmetz, M., Zwitter, T., & Siebert, , et. al. 2006, AJ, 132, 1645 CrossRefGoogle Scholar
Yanny, B., Rockosi, C., Newberg, H. J., et al. 2009, AJ, 137, 4377 CrossRefGoogle Scholar
Di Matteo, P., 2016, PASA, 33, e027 CrossRefGoogle Scholar
Majewski, S. R., Wilson, J. C., Hearty, F., Schiavon, R. R., & Skrutskie, M. F. 2010, in IAU Symposium, Vol. 265, IAU Symposium, ed. Cunha, K., Spite, M., & Barbuy, B., 480–481CrossRefGoogle Scholar
Gilmore, G., Randich, S., Asplund, M., et al. 2012, The Messenger, 147, 25 Google Scholar
Ojha, D. K., 2001, MNRAS, 322, 426 CrossRefGoogle Scholar
Freeman, K. C. 2010, in Galaxies and their Masks, ed. Block, D. L., Freeman, K. C., & Puerari, I., 319CrossRefGoogle Scholar
Zhao, G., Chen, Y.-Q., Shi, J.-R., et al. 2006, CJAA, 6, 265 Google Scholar
Perryman, M. A. C., de Boer, K. S., Gilmore, G., et al. 2001, A&A, 369, 339 Google Scholar
Dalton, G., Trager, S. C., Abrams, D. C., et al. 2012, in Procspie, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, 84460PGoogle Scholar
de Jong, R. S., Bellido-Tirado, O., Chiappini, C., et al. 2012, 8446, 84460TGoogle Scholar
Binney, J. & Tremaine, S. 2008, Galactic Dynamics: Second Edition, ed. Binney, J. & Tremaine, S. (Princeton University Press)CrossRefGoogle Scholar
Minchev, I. & Quillen, A. C., 2006, MNRAS, 368, 623 CrossRefGoogle Scholar
Sygnet, J. F., Tagger, M., Athanassoula, E., & Pellat, R., 1988, MNRAS, 232, 733 CrossRefGoogle Scholar
Tagger, M., Sygnet, J. F., Athanassoula, E., & Pellat, R., 1987, ApJL, 318, L43 CrossRefGoogle Scholar
Schönrich, R. & Binney, J. 2009b, MNRAS, 399, 1145 CrossRefGoogle Scholar
Roškar, R., Debattista, V. P., Quinn, T. R., Stinson, G. S., & Wadsley, J., 2008, ApJL, 684, L79 CrossRefGoogle Scholar
Loebman, S. R., Roškar, R., Debattista, V. P., et al. 2011, ApJ, 737, 8 CrossRefGoogle Scholar
Minchev, I., Famaey, B., Quillen, A. C., et al. 2012a, A&A, 548, A127 Google Scholar
Robin, A. C., Haywood, M., Creze, M., Ojha, D. K., & Bienayme, O., 1996, A&A, 305, 125 Google Scholar
Martig, M., Minchev, I., & Flynn, C., 2014, MNRAS, 443, 2452 CrossRefGoogle Scholar
Vera-Ciro, C., D’Onghia, E., Navarro, J., & Abadi, M., 2014, ApJ, 794, 173 CrossRefGoogle Scholar
Grand, R. J. J., Springel, V., Gómez, F. A., et al. 2016, MNRAS, 459, 199 CrossRefGoogle Scholar
Minchev, I., Chiappini, C., & Martig, M. 2014a, A&A, 572, A92 Google Scholar
Minchev, I. 2017, arXiv:1701.07034Google Scholar
Minchev, I., Steinmetz, M., Chiappini, C., et al. 2017, ApJ, 834, 27 CrossRefGoogle Scholar
Yoachim, P. & Dalcanton, J. J., 2006, AJ, 131, 226 CrossRefGoogle Scholar
Pohlen, M., Zaroubi, S., Peletier, R. F., & Dettmar, R.-J., 2007, MNRAS, 378, 594 CrossRefGoogle Scholar
Cheng, J. Y., Rockosi, C. M., Morrison, H. L., et al. 2012, ApJ, 752, 51 CrossRefGoogle Scholar
Bovy, J., Rix, H.-W., Liu, C., et al. 2012, ApJ, 753, 148 CrossRefGoogle Scholar
van der Kruit, P. C. & Searle, L., 1982, A&A, 110, 61 Google Scholar
Comerón, S., Elmegreen, B. G., Knapen, J. H., et al. 2011, ApJL, 741, 28 CrossRefGoogle Scholar
Villalobos, Á. & Helmi, A., 2008, MNRAS, 391, 1806 CrossRefGoogle Scholar
Scannapieco, C., White, S. D. M., Springel, V., & Tissera, P. B., 2009, MNRAS, 396, 696 CrossRefGoogle Scholar
Minchev, I., Martig, M., Streich, D., et al. 2015, ApJL, 804, L9 CrossRefGoogle Scholar
Springel, V., Wang, J., Vogelsberger, M., et al. 2008, MNRAS, 391, 1685 CrossRefGoogle Scholar
Aumer, M., White, S. D. M., Naab, T., & Scannapieco, C., 2013, MNRAS, 434, 3142 CrossRefGoogle Scholar
Kazantzidis, S., Bullock, J. S., Zentner, , et al. 2008, ApJ, 688, 254 CrossRefGoogle Scholar
Anders, F., Chiappini, C., Santiago, B. X., et al. 2014, A&A, 564, A115 Google Scholar
Bovy, J., Rix, H.-W., Schlafly, E. F., et al. 2016, ApJ, 823, 30 CrossRefGoogle Scholar
Mackereth, J. T., Bovy, J., Schiavon, R. P., et al. 2017, arXiv:1706.00018Google Scholar
Martig, M., Fouesneau, M., Rix, H.-W., et al. 2016, MNRAS, 456, 3655 CrossRefGoogle Scholar
Sanders, J. L. & Binney, J., 2015, MNRAS, 449, 3479 CrossRefGoogle Scholar
Schönrich, R. & Binney, J. 2009a, MNRAS, 396, 203 CrossRefGoogle Scholar
Kubryk, M., Prantzos, N., & Athanassoula, E., 2015, A&A, 580, A126 Google Scholar
Minchev, I., Chiappini, C., & Martig, M., 2013, A&A, 558, A9 Google Scholar