Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T15:09:01.569Z Has data issue: false hasContentIssue false

A galaxy dynamo by Supernova-driven interstellar turbulence

Published online by Cambridge University Press:  01 November 2008

Oliver Gressel
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany email: [email protected], [email protected], [email protected], [email protected]
Udo Ziegler
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany email: [email protected], [email protected], [email protected], [email protected]
Detlef Elstner
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany email: [email protected], [email protected], [email protected], [email protected]
Günther Rüdiger
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany email: [email protected], [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernovae are the dominant energy source for driving turbulence within the interstellar plasma. Until recently, their effects on magnetic field amplification in disk galaxies remained a matter of speculation. By means of self-consistent simulations of supernova-driven turbulence, we find an exponential amplification of the mean magnetic field on timescales of a few hundred million years. The robustness of the observed fast dynamo is checked at different magnetic Reynolds numbers, and we find sustained dynamo action at moderate Rm. This indicates that the mechanism might indeed be of relevance for the real ISM.

Sensing the flow via passive tracer fields, we infer that SNe produce a turbulent α effect which is consistent with the predictions of quasilinear theory. To lay a foundation for global mean-field models, we aim to explore the scaling of the dynamo tensors with respect to the key parameters of our simulations. Here we give a first account on the variation with the supernova rate.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Dziourkevitch, N., Elstner, D., & Rüdiger, G. 2004, A&A 423, L29Google Scholar
Fröhlich, H.-E. & Schultz, M. 1996, A&A 311, 451Google Scholar
Gressel, O., Ziegler, U., Elstner, D., & Rüdiger, G. 2008a, AN 329, 619Google Scholar
Gressel, O., Elstner, D., Ziegler, U., & Rüdiger, G. 2008b, A&A 486, L35Google Scholar
Hanasz, M., Kowal, G., Otmianowska-Mazur, K., & Lesch, H. 2004, ApJ 605, L33CrossRefGoogle Scholar
Krause, F. & Rädler, K. H. 1980, Mean-field magnetohydrodynamics and dynamo theory (Oxford: Pergamon Press)Google Scholar
Lazarian, A. & Vishniac, E. T. 1999, ApJ 517, 700CrossRefGoogle Scholar
Otmianowska-Mazur, K., Kowal, G., & Hanasz, M. 2007, ApJ 668, 110CrossRefGoogle Scholar
Piontek, R. A. & Ostriker, E. C. 2007, ApJ 663, 183CrossRefGoogle Scholar
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., & Christensen, U. 2005, AN 326, 245Google Scholar
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., & Christensen, U. R. 2007, GApFD 101, 81Google Scholar