Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T21:45:19.279Z Has data issue: false hasContentIssue false

Galactoseismology in the GAIA Era

Published online by Cambridge University Press:  21 March 2017

Sukanya Chakrabarti*
Affiliation:
84 Lomb Memorial Drive, School of Physics and Astronomy, RIT, Rochester NY 14623 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The GAIA satellite will provide unprecedented phase-space information for our Galaxy and enable a new era of Galactic dynamics. We may soon see successful realizations of Galactoseismology, i.e., inferring the characteristics of the Galactic potential and sub-structure from a dynamical analysis of observed perturbations in the gas or stellar disk of the Milky Way. Here, we argue that to maximally take advantage of the GAIA data and other complementary surveys, it is necessary to build comprehensive models for both the stars and the gas. We outline several key morphological puzzles of the Galactic disk and proposed solutions that may soon be tested.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2006, ApJL 642 L137.CrossRefGoogle Scholar
Bigiel, F., Leroy, A., Walter, F., Blitz, L., et al. 2010, AJ, 140, 1194.Google Scholar
Carlin, J., DeLaunay, J., Newberg, , et al. 2013, ApJL 777 L5.Google Scholar
Chakrabarti, S. & Blitz, L. 2009, MNRAS 399 L118.Google Scholar
Chakrabarti, S. & Blitz, L. 2011, ApJ, 731, 40.CrossRefGoogle Scholar
Chakrabarti, S., Bigiel, F., Chang, P., & Blitz, L. 2011, ApJ, 743.Google Scholar
Chakrabarti, S. & ApJ, 2013, 771, 98.CrossRefGoogle Scholar
Chakrabarti, S., Saito, R., Quillen, A., et al. 2015, ApJL 802L 4.Google Scholar
Chakrabarti, S., Angeloni, R., Freeman, K., et al. 2016, submitted to ApJ, arXiv: 160103381.Google Scholar
Chang, P. & Chakrabarti, S. 2011, MNRAS, 416, 618.Google Scholar
Deg, N. & Widrow, L. 2014, MNRAS, 439, 2678.CrossRefGoogle Scholar
Ibata, R. A., Wyse, R., Gilmore, G., Irwin, M., & Suntzeff, N. B. 1997, AJ, 113, 634.CrossRefGoogle Scholar
Johnston, K. V., Zhao, H., Spergel, D. N., & Hernquist, L. 1999, ApJ 512 L109.CrossRefGoogle Scholar
Levine, E. S., Blitz, L., & Heiles, C. 2006, Science, 312, 1773.Google Scholar
Newberg, H. J., Yanny, B., Rockosi, C., et al. 2002, ApJ, 569, 245.Google Scholar
Perryman, M. A. C., Boer de, K. S., Gilmore, G. et al. 2001, A&A, 369, 339.Google Scholar
Price-Whelan, A. M. & Johnston, K. V. 2013, ApJL 778 L12.Google Scholar
Xu, Y., Newberg, H., Carlin, J., et al. 2015, ApJ, 801, 105.CrossRefGoogle Scholar
Widrow, L. M., Gardner, S., Yanny, B., et al. 2012, ApJL 750 L41.Google Scholar