Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T10:29:10.634Z Has data issue: false hasContentIssue false

Galactoseismology in the Age of Gaia

Published online by Cambridge University Press:  02 August 2018

Lawrence M. Widrow
Affiliation:
Department of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, Ontario, Canada, K7L 3N6 email: [email protected], [email protected]
Matthew H. Chequers
Affiliation:
Department of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, Ontario, Canada, K7L 3N6 email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent observations from SEGUE, RAVE, and LAMOST have revealed tantalizing evidence that the local stellar disk of the Milky Way is in a state of disequilibrium. In particular, the disk appears to exhibit bending and breathing waves normal to its midplane within 2 kiloparsecs of our position within the disk. There also appear to be bending waves or corrugations at larger Galactocentric radii. These waves may be linked to other time-dependent disk phenomena such as the bar, spiral structure, and warp, or they may be the result of a passing dark matter subhalo or dwarf galaxy. Here, we discuss the observational evidence for these waves, the theory of bending and breathing waves in (simulated) stellar disks, and implications of disequilibrium for attempts to determine the local vertical force and dark matter density (the Oort problem). We also discuss the types of analyses that one might do with the Gaia database.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Banik, N., Widrow, L. M., & Dodelson, S., 2017, MNRAS, 464, 3775Google Scholar
Binney, J., 1992, ARAA, 30, 51Google Scholar
Bovy, J. & Rix, H.-W., 2013, ApJ, 779, 115Google Scholar
Carlin, J. L., DeLaunay, J., Newberg, H. J., et al. 2013, ApJL, 777, L5Google Scholar
Chequers, M. H. & Widrow, L. M. 2017, submitted to MNRASGoogle Scholar
de la Vega, A., Quillen, A. C., Carlin, J. L., Chakrabarti, S., & D’Onghia, E., 2015, MNRAS, 454, 933Google Scholar
Dorman, C. E., Widrow, L. M., Guhathakurta, P., et al. 2013, ApJ, 779, 103Google Scholar
Gauthier, J.-R., Dubinski, J., & Widrow, L. M., 2006, ApJ, 653, 1180Google Scholar
Gómez, F. A., Minchev, I., O’Sh ea, B. W., et al. 2013, MNRAS, 429, 159Google Scholar
Gómez, F. A., White, S. D. M., Marinacci, F., et al. 2016, MNRAS, 456, 2779Google Scholar
Gómez, F. A., White, S. D. M., Grand, R. J. J., et al. 2017, MNRAS, 465, 3446Google Scholar
Hunter, C. & Toomre, A., 1969, ApJ, 155, 747Google Scholar
Levine, E. S., Blitz, L., & Heiles, C., 2006, ApJ, 643, 881Google Scholar
Newberg, H. J., Yanny, B., Rockosi, C., et al. 2002, ApJ, 569, 245Google Scholar
Purcell, C. W., Bullock, J. S., Tol lerud, E. J., Rocha, M., & Chakrabarti, S., 2011, Nature, 477, 301Google Scholar
Reshetnikov, V. P., Mosenkov, A. V., Moiseev, A. V., Kotov, S. S., & Savchenko, S. S., 2016, MNRAS, 461, 4233Google Scholar
Reylé, C., Marshall, D. J., Robin, A. C., & Schultheis, M., 2009, A&A, 495, 819Google Scholar
Sellwood, J. A. & Athanassoula, E., 1986, MNRAS, 221, 195Google Scholar
Sellwood, J. A., Nelson, R. W., & Tremaine, S., 1998, ApJ, 506, 590Google Scholar
Sheffield, A. A., Johnston, K. V., Cunha, K., Smith, V. V., & Majewski, S. R., 2016, The General Assembly of Galaxy Halos: Structure, Origin and Evolution, 317, 241Google Scholar
Sparke, L. S. & Casertano, S., 1988, MNRAS, 234, 873Google Scholar
Springel, V., 2005, MNRAS, 364, 1105Google Scholar
Toth, G. & Ostriker, J. P., 1992, ApJ, 389, 5Google Scholar
Trick, W. H., Bovy, J., & Rix, H.-W., 2016, ApJ, 830, 97Google Scholar
Wang, H. et al. this volumeGoogle Scholar
Widrow, L. M., Pym, B., & Dubinski, J., 2008, ApJ, 679, 12391259Google Scholar
Widrow, L. M., Gardner, S., Yanny, B., Dodelson, S., & Chen, H.-Y., 2012, ApJL, 750, L41Google Scholar
Widrow, L. M., Barber, J., Chequers, M. H., & Cheng, E., 2014, MNRAS, 440, 1971Google Scholar
Williams, M. E. K., Steinmetz, M., Binney, J., et al. 2013, MNRAS, 436, 101Google Scholar
Xu, Y., Newberg, H. J., Carlin, J. L., et al. 2015, APJ, 801, 105Google Scholar
Yanny, B., Newberg, H. J., Grebel, E. K., et al. 2003, ApJ, 588, 824Google Scholar
Yanny, B. & Gardner, S., 2013, ApJ, 777, 91Google Scholar