Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T05:25:33.564Z Has data issue: false hasContentIssue false

The Galactic Disk-Halo Transition – Evidence from Stellar Abundances

Published online by Cambridge University Press:  01 June 2008

Poul Erik Nissen
Affiliation:
Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark email: [email protected]
William J. Schuster
Affiliation:
Observatorio Astronómico Nacional, Universidad Nacional Autónoma de México, Apartado Postal 877, Ensenada, BC, 22800México email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New information on the relations between the Galactic disks, the halo, and satellite galaxies is being obtained from elemental abundances of stars having metallicities in the range −1.5 < [Fe/H] < −0.5. The first results for a sample of 26 halo stars and 13 thick-disk stars observed with the ESO VLT/UVES spectrograph are presented. The halo stars fall in two distinct groups: one group (9 stars) has [α/Fe] = 0.30 ± 0.03 like the thick-disk stars. The other group (17 stars) shows a clearly deviating trend ranging from [α/Fe] = 0.20 at [Fe/H] = −1.3 to [α/Fe] = 0.08 at [Fe/H] = −0.8. The kinematics of the stars are discussed and the abundance ratios Na/Fe, Ni/Fe, Cu/Fe and Ba/Y are applied to see if the “low-alpha” stars are connected to the thin disk or to Milky Way satellite galaxies. Furthermore, we compare our data with simulations of chemical abundance distributions in hierarchically formed stellar halos in a ΛCDM Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bensby, T., Feltzing, S., Lundström, I., & Ilyin, I. 2005, A&A, 433, 185Google Scholar
Font, A. S., Johnston, K. V., Bullock, J. S., & Robertson, B. E. 2006, ApJ, 638, 585CrossRefGoogle Scholar
Gilmore, G. & Wyse, R. F. G. 1998, AJ, 116, 748CrossRefGoogle Scholar
Gratton, R. G., Caretta, E., Desidera, S., et al. 2003, A&A, 406, 131Google Scholar
Koch, A., Grebel, E. K., Gilmore, G. F. et al. 2008, AJ, 135, 1580CrossRefGoogle Scholar
Nissen, P. E. & Schuster, W. J. 1997, A&A, 326, 751Google Scholar
Pompéia, L., Hill, V., Spite, M. et al. 2008, A&A, 480, 379Google Scholar
Reddy, B. E., Tomkin, J., Lambert, D. L., & Allende Prieto, C. 2003, MNRAS, 340, 304CrossRefGoogle Scholar
Reddy, B. E., Lambert, D. L., & Allende Prieto, C. 2006, MNRAS, 367, 1329CrossRefGoogle Scholar
Sbordone, L., Bonifacio, P., Buonanno, R. et al. 2007, A&A, 465, 815Google Scholar
Schuster, W. J., Moitinho, A., Márquez, A., Parrao, L., & Covarrubias, E. 2006, A&A, 445, 939Google Scholar
Tsujimoto, T., Nomoto, K., Yoshii, Y. et al. 1995, MNRAS, 277, 945CrossRefGoogle Scholar
Venn, K. A., Irwin, M., Shetrone, M. D. et al. 2004, AJ, 128, 1177CrossRefGoogle Scholar