Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T16:40:53.789Z Has data issue: false hasContentIssue false

The galactic center: The ideal laboratory for studying supermassive black holes

Published online by Cambridge University Press:  06 January 2010

Frank Eisenhauer*
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Galactic Center constitutes the best astrophysical evidence for the existence of black holes, and it is the ideal laboratory for studying physics in the vicinity of such objects. The combination of infrared observations of three dimensional orbits of stars within the central light days and the extreme compactness and motionlessness of the radio-counterpart of the gravitational center have shown beyond any reasonable doubt that the Galactic Center harbors a supermassive black hole. The flaring activity from the black hole gives first insights to the physical processes close to the last stable orbit. Here I review the current state of observations and theory of the Galactic Center black hole and give an update on the latest results. I also outline the next steps towards even higher angular resolution observations, which give promise to directly probe the physics and space-time curvature just outside the event horizon.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Backer, D. C. & Sramek, R. A., 1999, ApJ, 524, 805CrossRefGoogle Scholar
Balick, B. & Brown, R. L., 1974, ApJ, 194, 265CrossRefGoogle Scholar
Bower, G. C., Falcke, H., Herrnstein, R. M., Zhao, J.-H., Goss, W. M., & Backer, D. C., 2004, Sci, 304, 704CrossRefGoogle Scholar
Bower, G. C., Goss, W. M., Falcke, H., Backer, D. C., & Lithwick, Y., 2006, ApJ, 648, L127CrossRefGoogle Scholar
Broderick, A. E., Fish, V. L., Doeleman, S. S., & Loeb, A., 2009, ApJ, 697, 45CrossRefGoogle Scholar
Broderick, A. E. & Loeb, A., 2005, MNRAS, 363, 353CrossRefGoogle Scholar
Broderick, A. E., Loeb, A., & Narayan, R., 2009, arXiv:0903.1105Google Scholar
Broderick, A. E. & Narayan, R., 2006, ApJ, 638, L21CrossRefGoogle Scholar
Chapline, G., 2005, arXiv:astro-ph/0503200Google Scholar
Do, T., Ghez, A. M., Morris, M. R., Yelda, S., Meyer, L., Lu, J. R., Hornstein, S. D., & Matthews, K., 2009, ApJ, 691, 1021CrossRefGoogle Scholar
Doeleman, S. S., et al. , 2008, Natur, 455, 78CrossRefGoogle Scholar
Eckart, A. & Genzel, R., 1996, Natur, 383, 415CrossRefGoogle Scholar
Eckart, A., Schödel, R., Meyer, L., Trippe, S., Ott, T., & Genzel, R., 2006, A&A, 455, 1CrossRefGoogle Scholar
Eisenhauer, F., et al. , 2005, ApJ, 628, 246CrossRefGoogle Scholar
Eisenhauer, F., et al. , 2008, SPIE, 7013, 69Google Scholar
Eisenhauer, F., Perrin, G., Rabien, S., Eckart, A., Lena, P., Genzel, R., Abuter, R., & Paumard, T., 2005, AN, 326, 561Google Scholar
Falcke, H., Melia, F., & Agol, E., 2000, ApJ, 528, L13CrossRefGoogle Scholar
Fish, V. L., Broderick, A. E., Doeleman, S. S., & Loeb, A., 2009, ApJ, 692, L14CrossRefGoogle Scholar
Fragile, P. C. & Mathews, G. J., 2000, ApJ, 542, 328CrossRefGoogle Scholar
Fujii, Y., & Maeda, K.-I., 2003, The Scalar-Tensor Theory of Gravitation, Cambridge University Press, ISBN 0521811597CrossRefGoogle Scholar
Genzel, R., Hollenbach, D., & Townes, C. H., 1994, RPPh, 57, 417CrossRefGoogle Scholar
Genzel, R., Schödel, R., Ott, T., Eckart, A., Alexander, T., Lacombe, F., Rouan, D., & Aschenbach, B., 2003, Natur, 425, 934CrossRefGoogle Scholar
Ghez, A. M., Klein, B. L., Morris, M., & Becklin, E. E., 1998, ApJ, 509, 678CrossRefGoogle Scholar
Ghez, A. M., et al. , 2008, ApJ, 689, 1044CrossRefGoogle Scholar
Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., & Ott, T., 2009, ApJ, 692, 1075CrossRefGoogle Scholar
Hamaus, N., Paumard, T., Müller, T., Gillessen, S., Eisenhauer, F., Trippe, S., & Genzel, R., 2009, ApJ, 692, 902CrossRefGoogle Scholar
Huang, L., Cai, M., Shen, Z.-Q., & Yuan, F., 2007, MNRAS, 379, 833CrossRefGoogle Scholar
Jaroszynski, M., 1998, AcA, 48, 653CrossRefGoogle Scholar
Lacy, J. H., Townes, C. H., Geballe, T. R., & Hollenbach, D. J., 1980, ApJ, 241, 132CrossRefGoogle Scholar
Levin, Y. & Beloborodov, A. M., 2003, ApJ, 590, L33CrossRefGoogle Scholar
Mazur, P. O. & Mottola, E., 2001, arXiv:gr-qc/0109035Google Scholar
Meyer, L., Do, T., Ghez, A., Morris, M. R., Yelda, S., Schödel, R., & Eckart, A., 2009, ApJ, 694, L87CrossRefGoogle Scholar
Narayan, R., Garcia, M. R., & McClintock, J. E., 1997, ApJ, 478, L79CrossRefGoogle Scholar
Paumard, T., et al. , 2005, AN, 326, 568Google Scholar
Psaltis, D., 2004, AIPC, 714, 29Google Scholar
Reid, M. J. & Brunthaler, A., 2004, ApJ, 616, 872CrossRefGoogle Scholar
Reid, M. J., Readhead, A. C. S., Vermeulen, R. C., & Treuhaft, R. N., 1999, ApJ, 524, 816CrossRefGoogle Scholar
Rubilar, G. F. & Eckart, A., 2001, A&A, 374, 95CrossRefGoogle Scholar
Shen, Z.-Q., Lo, K. Y., Liang, M.-C., Ho, P. T. P., & Zhao, J.-H., 2005, Natur, 438, 62CrossRefGoogle Scholar
Townes, C. H., Lacy, J. H., Geballe, T. R., & Hollenbach, D. J., 1983, Natur, 301, 661CrossRefGoogle Scholar
Trippe, S., Paumard, T., Ott, T., Gillessen, S., Eisenhauer, F., Martins, F., & Genzel, R., 2007, MNRAS, 375, 764CrossRefGoogle Scholar
Weinberg, N. N., Milosavljević, M., & Ghez, A. M., 2005, ApJ, 622, 878CrossRefGoogle Scholar
Will, C. M., 2008, ApJ, 674, L25CrossRefGoogle Scholar
Wollman, E. R., Geballe, T. R., Lacy, J. H., Townes, C. H., & Rank, D. M., 1977, ApJ, 218, L103CrossRefGoogle Scholar
Yuan, F., Quataert, E., & Narayan, R., 2004, ApJ, 606, 894CrossRefGoogle Scholar
Zucker, S., Alexander, T., Gillessen, S., Eisenhauer, F., & Genzel, R., 2006, ApJ, 639, L21CrossRefGoogle Scholar