Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T00:18:28.872Z Has data issue: false hasContentIssue false

Gaia: The Astrometry Revolution

Published online by Cambridge University Press:  27 January 2016

A. Sozzetti
Affiliation:
INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, I-10025 Pino Torinese (Italy) email: [email protected]
M. Bonavita
Affiliation:
The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
S. Desidera
Affiliation:
INAF - Osservatorio Astronomico di Padova - Vicolo dell'Osservatorio 5, I-35122 Padova (Italy)
R. Gratton
Affiliation:
INAF - Osservatorio Astronomico di Padova - Vicolo dell'Osservatorio 5, I-35122 Padova (Italy)
M. G. Lattanzi
Affiliation:
INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, I-10025 Pino Torinese (Italy) email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The power of micro-arcsecond (μas) astrometry is about to be unleashed. ESA's Gaia mission, now headed towards the end of the first year of routine science operations, will soon fulfil its promise for revolutionary science in countless aspects of Galactic astronomy and astrophysics. The potential of Gaia position measurements for important contributions to the astrophysics of planetary systems is huge. We focus here on the expectations for detection and improved characterization of ‘young’ planetary systems in the neighborhood of the Sun using a combination of Gaia μas astrometry and direct imaging techniques.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Beuzit, J.-L., et al. 2006, The Messenger, 125, 29Google Scholar
Bonavita, M., et al. 2012, A&A, 537, A67Google Scholar
Burrows, A. 2005, Nature, 433, 261CrossRefGoogle Scholar
Casertano, S., Lattanzi, M. G., Sozzetti, A., et al. 2008, A&A, 482, 699Google Scholar
Cumming, A., et al. 2008, PASP, 120, 531CrossRefGoogle Scholar
de Bruijne, J., Kohley, R., & Prusti, T. 2010, Proc. SPIE 7731 id. 77311CGoogle Scholar
de Bruijne, J., Rygl, K., & Antoja, T. 2015, EAS Pub. Ser., in press (arXiv:1502.00791)Google Scholar
Helled, R., et al. 2014, Protostars and Planets VI, University of Arizona Press, Tucson, 643Google Scholar
Lattanzi, M. G., Spagna, A., Sozzetti, A., et al. 2000, MNRAS, 317, 211Google Scholar
López-Santiago, J., et al. 2006, ApJ, 643, 1160Google Scholar
Macintosh, B., et al. 2014, PNAS, 111, 12661Google Scholar
Perryman, M. A. C., et al. 2001, A&A, 369, 339Google Scholar
Perryman, M. A. C., Hartman, J., Bakos, G. Á., et al. 2014, ApJ, 797, 14Google Scholar
Sozzetti, A., Casertano, S., Lattanzi, M. G., et al. 2001, A&A, 373, L21Google Scholar
Sozzetti, A. 2005, PASP, 117, 1021Google Scholar
Sozzetti, A. 2010, EAS Pub. Ser., 42, 55CrossRefGoogle Scholar
Sozzetti, A. 2014, Mem. SAIt, 85, 643Google Scholar
Sozzetti, A. 2015, EAS Pub. Ser., in press (arXiv:1502.03575)Google Scholar
Sozzetti, A., Giacobbe, P., Lattanzi, M. G., et al. 2014, MNRAS, 437, 497CrossRefGoogle Scholar
Torres, G. 1999, PASP, 111, 169Google Scholar
Zuckerman, B. & Song, I. 2004, ARA&A, 42, 685Google Scholar
Zurlo, A., et al. 2014, A&A, 572, A85Google Scholar