Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T21:02:20.110Z Has data issue: false hasContentIssue false

The Future of Stellar Populations Studies in the Milky Way and the Local Group

Published online by Cambridge University Press:  13 April 2010

Steven R. Majewski*
Affiliation:
University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The last decade has seen enormous progress in understanding the structure of the Milky Way and neighboring galaxies via the production of large-scale digital surveys of the sky like 2MASS and SDSS, as well as specialized, counterpart imaging surveys of other Local Group systems. Apart from providing snaphots of galaxy structure, these “cartographic” surveys lend insights into the formation and evolution of galaxies when supplemented with additional data (e.g., spectroscopy, astrometry) and when referenced to theoretical models and simulations of galaxy evolution. These increasingly sophisticated simulations are making ever more specific predictions about the detailed chemistry and dynamics of stellar populations in galaxies. To fully exploit, test and constrain these theoretical ventures demands similar commitments of observational effort as has been plied into the previous imaging surveys to fill out other dimensions of parameter space with statistically significant intensity. Fortunately the future of large-scale stellar population studies is bright with a number of grand projects on the horizon that collectively will contribute a breathtaking volume of information on individual stars in Local Group galaxies. These projects include: (1) additional imaging surveys, such as Pan-STARRS, SkyMapper and LSST, which, apart from providing deep, multicolor imaging, yield time series data useful for revealing variable stars (including critical standard candles, like RR Lyrae variables) and creating large-scale, deep proper motion catalogs; (2) higher accuracy, space-based astrometric missions, such as Gaia and SIM-Lite, which stand to provide critical, high precision dynamical data on stars in the Milky Way and its satellites; and (3) large-scale spectroscopic surveys provided by RAVE, APOGEE, HERMES, LAMOST, and the Gaia spectrometer, which will yield not only enormous numbers of stellar radial velocities, but extremely comprehensive views of the chemistry of stellar populations. Meanwhile, previously dust-obscured regions of the Milky Way will continue to be systematically exposed via large infrared surveys underway or on the way, such as the various GLIMPSE surveys from Spitzer's IRAC instrument, UKIDSS, APOGEE, JASMINE and WISE.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R. 2003, ApJ, 591, 499CrossRefGoogle Scholar
Adén, D., et al. 2009, ApJL, 706, L150Google Scholar
Bedin, L. R., Piotto, G., Carraro, G., King, I. R., & Anderson, J. 2006, A&A, 460, L27Google Scholar
Bellazzini, M., Newberg, H. J., Correnti, M., Ferraro, F. R., & Monaco, L. 2006, A&A, 457, L21Google Scholar
Belokurov, V. et al. 2006, ApJL, 642, L137CrossRefGoogle Scholar
Belokurov, V. et al. 2007a, ApJ, 654, 897Google Scholar
Belokurov, V. et al. 2007b, ApJL, 657, L89Google Scholar
Benjamin, R. A. et al. 2005, ApJL, 630, L149Google Scholar
Besla, G., Kallivayalil, N., Hernquist, L., Robertson, B., Cox, T. J., van der Marel, R. P., & Alcock, C. 2007, ApJ, 668, 949CrossRefGoogle Scholar
Brown, T. M. et al. 2006, ApJ, 652, 323CrossRefGoogle Scholar
Brown, T. M. et al. 2009, ApJS, 184, 152CrossRefGoogle Scholar
Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2007, ApJ, 666, 231CrossRefGoogle Scholar
Bullock, J. S. & Johnston, K. V. 2005, ApJ, 635, 931Google Scholar
Carlin, J. L., Grillmair, C., Muñoz, R., Nidever, D., & Majewski, S. 2009, ApJL, 702, L9CrossRefGoogle Scholar
Carollo, D. et al. 2007, Nature, 450, 1020CrossRefGoogle Scholar
Chapman, S. C. et al. 2007, ApJL, 662, L79CrossRefGoogle Scholar
Chapman, S. C. et al. 2008, MNRAS, 390, 1437Google Scholar
Chou, M.-Y. et al. 2007, ApJ, 670, 346Google Scholar
Chou, M.-Y., Cunha, K., Majewski, S. R., Smith, V. V., Patterson, R. J., Martinez-Delgado, D., & Geisler, D. 2009, ApJ, in press (arXiv:0911.4364)Google Scholar
Churchwell, E. et al. 2009, PASP, 121, 213CrossRefGoogle Scholar
Coleman, M. G. et al. 2007, ApJL, 668, L43CrossRefGoogle Scholar
Dalcanton, J. J., et al. 2009, ApJS, 183, 67CrossRefGoogle Scholar
Deacon, N. R., Hambly, N. C., King, R. R., & McCaughrean, M. J. 2009, MNRAS, 394, 857CrossRefGoogle Scholar
Diemand, J., Zemp, M., Moore, B., Stadel, J., & Carollo, C. M. 2005, MNRAS, 364, 665Google Scholar
Dolphin, A. E., Weisz, D. R., Skillman, E. D., & Holtzman, J. A. 2005, arXiv:astro-ph/0506430Google Scholar
D'Onghia, E. & Lake, G. 2008, ApJL, 686, L61Google Scholar
Duffau, S., Zinn, R., Vivas, A. K., Carraro, G., Méndez, R. A., Winnick, R., & Gallart, C. 2006, ApJL, 636, L97Google Scholar
Fardal, M. A., Babul, A., Geehan, J. J., & Guhathakurta, P. 2006, MNRAS, 366, 1012CrossRefGoogle Scholar
Fardal, M. A., Babul, A., Guhathakurta, P., Gilbert, K. M., & Dodge, C. 2008, ApJL, 682, L33Google Scholar
Fitzpatrick, E. L. & Massa, D. 2009, ApJ, 699, 1209CrossRefGoogle Scholar
Fusi Pecci, F., Bellazzini, M., Cacciari, C., & Ferraro, F. R. 1995, AJ, 110, 1664CrossRefGoogle Scholar
Gao, J., Jiang, B. W., & Li, A. 2009, ApJ, 707, 89Google Scholar
Gibson, B. 2007, IAU Symposium: Stellar Populations as Building Blocks of Galaxies, 241, 161Google Scholar
Gilbert, K. M. et al. 2007, ApJ, 668, 245CrossRefGoogle Scholar
Gouda, N. et al. 2005, in The Three-Dimensional Universe with Gaia, 576, 77Google Scholar
Grebel, E. K., Gallagher, J. S. III, & Harbeck, D. 2003, AJ, 125, 1926Google Scholar
Grillmair, C. J. 2006, ApJL, 651, L29Google Scholar
Grillmair, C. J. 2009, ApJ, 693, 1118CrossRefGoogle Scholar
Harris, J. 2007, ApJ, 658, 345CrossRefGoogle Scholar
Ibata, R. A., Gilmore, G., & Irwin, M. J. 1995, MNRAS, 277, 781Google Scholar
Ibata, R., Chapman, S., Ferguson, A. M. N., Irwin, M., Lewis, G., & McConnachie, A. 2004, MNRAS, 351, 117CrossRefGoogle Scholar
Ibata, R., Irwin, M., Lewis, G., Ferguson, A. M. N., & Tanvir, N. 2001, Nature, 412, 49CrossRefGoogle Scholar
Ibata, R., Martin, N. F., Irwin, M., Chapman, S., Ferguson, A. M. N., Lewis, G. F., & McConnachie, A. W. 2007, ApJ, 671, 1591Google Scholar
Ibata, R., Mouhcine, M., & Rejkuba, M. 2009, MNRAS, 395, 126Google Scholar
Irwin, M. J. et al. 2007, ApJL, 656, L13CrossRefGoogle Scholar
Irwin, M. J., Ferguson, A. M. N., Huxor, A. P., Tanvir, N. R., Ibata, R. A., & Lewis, G. F. 2008, ApJL, 676, L17CrossRefGoogle Scholar
Ivezić, Ž. et al. 2004, ASP Conf. Ser., 327, 104Google Scholar
Johnston, K. V., Bullock, J. S., Sharma, S., Font, A., Robertson, B. E., & Leitner, S. N. 2008, ApJ, 689, 936Google Scholar
Kalirai, J. S. et al. 2006, ApJ, 648, 389Google Scholar
Kalirai, J. S. et al. 2007, ApJL, 657, L93CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., & Alcock, C. 2006a, ApJ, 652, 1213CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., Alcock, C., Axelrod, T., Cook, K. H., Drake, A. J., & Geha, M. 2006b, ApJ, 638, 772Google Scholar
Kang, X., Mao, S., Gao, L., & Jing, Y. P. 2005, A&A, 437, 383Google Scholar
Klimentowski, J., Łokas, E., Kazantzidis, S., Mayer, L., & Mamon, G. 2009, MNRAS, 397, 2015CrossRefGoogle Scholar
Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, ApJ, 522, 82Google Scholar
Knebe, A., Gill, S., Gibson, B., Lewis, G., Ibata, R., & Dopita, M. 2004, ApJ, 603, 7Google Scholar
Kroupa, P., Theis, C., & Boily, C. M. 2005, A&A, 431, 517Google Scholar
Kunkel, W. E. 1979, ApJL, 228, 718CrossRefGoogle Scholar
Kunkel, W. E. & Demers, S. 1976, Royal Greenwich Obs. Bulletin, 182, 241Google Scholar
Lanfranchi, G. A., Matteucci, F., & Cescutti, G. 2008, A&A, 481, 635Google Scholar
Law, D. R., Johnston, K. V., & Majewski, S. R. 2005, ApJ, 619, 807Google Scholar
Law, D. R., Majewski, S. R., & Johnston, K. V. 2009, ApJL, 703, L67Google Scholar
Li, Y.-S. & Helmi, A. 2008, MNRAS, 385, 1365Google Scholar
Lucas, P. W. et al. 2008, MNRAS, 391, 136Google Scholar
Lynden-Bell, D. 1976, MNRAS, 174, 695Google Scholar
Lynden-Bell, D. 1982, The Observatory, 102, 202Google Scholar
Majewski, S. R. 1993, ARAA, 31, 575Google Scholar
Majewski, S. R. 1994, ApJL, 431, L17Google Scholar
Majewski, S. R. 2004, Pub. Astron. Soc. Australia, 21, 197CrossRefGoogle Scholar
Majewski, S. R. et al. 2007, ApJL, 670, L9CrossRefGoogle Scholar
Majewski, S. R., Munn, J. A., & Hawley, S. L. 1996, ApJL, 459, L73CrossRefGoogle Scholar
Majewski, S. R., Nidever, D. L., Muñoz, R. R., Patterson, R. J., Kunkel, W. E., & Carlin, J. L. 2009, IAU Symposium: The Magellanic Clouds: Star, Gas and Galaxies, 256, 51Google Scholar
Majewski, S. R., Phelps, R., & Rich, R. M. 1996, ASP Conf. Ser., 112, 1Google Scholar
Majewski, S. R., Skrutskie, M. F., Weinberg, M. D., & Ostheimer, J. C. 2003, ApJ, 599, 1082Google Scholar
Martin, N. F. et al. 2006, MNRAS, 371, 1983Google Scholar
Martin, N. F. et al. 2009, ApJ, 705, 758Google Scholar
Martinez-Delgado, D., Gabany, R. J., Penarrubia, J., Rix, H.-W., Majewski, S. R., Trujillo, I., & Pohlen, M. 2008a, Highlights of Spanish Astrophysics V, in press, (arXiv:0812.3219)Google Scholar
Martínez-Delgado, D., Pohlen, M., Gabany, R. J., Majewski, S. R., Peñarrubia, J., & Palma, C. 2009, ApJ, 692, 955CrossRefGoogle Scholar
Martínez-Delgado, D., Peñarrubia, J., Gabany, R. J., Trujillo, I., Majewski, S. R., & Pohlen, M. 2008b, ApJ, 689, 184CrossRefGoogle Scholar
Mayer, L. et al. 2001a, ApJL, 547, L123Google Scholar
Mayer, L. et al. 2001b, ApJ, 559, 754Google Scholar
McConnachie, A. W. et al. 2008, ApJ, 688, 1009Google Scholar
Merrifield, M. R. 2005, The Identification of Dark Matter, eds. Spooner, N. J. C. & Kudryavtsev, V., (Singapore: World Scientific), 49CrossRefGoogle Scholar
Metz, M., Kroupa, P., & Jerjen, H. 2007, MNRAS, 374, 1125Google Scholar
Metz, M., Kroupa, P., & Libeskind, N. I. 2008, ApJ, 680, 287CrossRefGoogle Scholar
Metz, M., Kroupa, P., & Jerjen, H. 2009a, MNRAS, 394, 2223Google Scholar
Metz, M., Kroupa, P., Theis, C., Hensler, G., & Jerjen, H. 2009b, ApJ, 697, 269Google Scholar
Monaco, L. et al. 2007, A&A, 464, 201Google Scholar
Muñoz, R. R. et al. 2006a, ApJ, 649, 201Google Scholar
Muñoz, R. R., Carlin, J. L., Frinchaboy, P. M., Nidever, D. L., Majewski, S. R., & Patterson, R. J. 2006b, ApJL, 650, L51Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493Google Scholar
Newberg, H. J., et al. 2002, ApJ, 569, 245Google Scholar
Newberg, H. J., Yanny, B., & Willett, B. A. 2009, ApJL, 700, L61CrossRefGoogle Scholar
Noël, N. E. D. & Gallart, C. 2007, ApJL, 665, L23Google Scholar
Palma, C., Majewski, S. R., & Johnston, K. V. 2002, ApJ, 564, 736CrossRefGoogle Scholar
Piatek, S., Pryor, C., Olszewski, E. W., Harris, H. C., Mateo, M., Minniti, D., & Tinney, C. G. 2003, AJ, 126, 2346CrossRefGoogle Scholar
Piatek, S. et al. 2005, AJ, 130, 95Google Scholar
Piatek, S. et al. 2006, AJ, 131, 1445Google Scholar
Piatek, S. et al. 2007, AJ, 133, 818Google Scholar
Piatek, S., Pryor, C., & Olszewski, E. W. 2008, AJ, 135, 1024Google Scholar
Rocha-Pinto, H. J., Majewski, S. R., Skrutskie, M. F., Crane, J. D., & Patterson, R. J. 2004, ApJ, 615, 732Google Scholar
Searle, L. & Zinn, R. 1978, ApJ, 225, 357CrossRefGoogle Scholar
Sharma, S. et al. 2009, ApJ, submittedGoogle Scholar
Shaya, E. et al. 2009, Astro2010: The Astronomy and Astrophysics Decadal Survey, 2010, 274Google Scholar
Simon, J. D. & Geha, M. 2007, ApJ, 670, 313Google Scholar
Strigari, L. E., Bullock, J. S., Kaplinghat, M., Simon, J. D., Geha, M., Willman, B., & Walker, M. G. 2008, Nature, 454, 1096Google Scholar
Trujillo, I., Martinez-Valpuesta, I., Martínez-Delgado, D., Peñarrubia, J., Gabany, R. J., & Pohlen, M. 2009, ApJ, 704, 618Google Scholar
Vansevičius, V. et al. 2004, ApJL, 611, L93Google Scholar
Vivas, A. K. & Zinn, R. 2006, AJ, 132, 714Google Scholar
Watkins, L. L. et al. 2009, MNRAS, 398, 1757Google Scholar
Willman, B. et al. 2005, ApJL, 626, L85CrossRefGoogle Scholar
Zasowski, G. et al. 2009, ApJ, in pressGoogle Scholar
Zentner, A. R., Kravtsov, A. V., Gnedin, O. Y., & Klypin, A. A. 2005, ApJ, 629, 219Google Scholar
Zheng, Z. et al. 1999, AJ, 117, 2757Google Scholar
Zucker, D. B., et al. 2006, ApJL, 643, L103Google Scholar
Zucker, D. B., et al. 2007, ApJL, 659, L21Google Scholar