Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T00:33:33.710Z Has data issue: false hasContentIssue false

The future of Jupiter-like planets around Sun-like stars: first steps

Published online by Cambridge University Press:  16 August 2023

T. Konings
Affiliation:
Institute of Astronomy, KU Leuven - Celestijnenlaan 200D bus 2401, 3001 Leuven, Belgium
R. Baeyens
Affiliation:
Institute of Astronomy, KU Leuven - Celestijnenlaan 200D bus 2401, 3001 Leuven, Belgium
L. Decin
Affiliation:
Institute of Astronomy, KU Leuven - Celestijnenlaan 200D bus 2401, 3001 Leuven, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Planets that orbit low- to intermediate mass main sequence (MS) stars will experience vigorous star-planet interactions when the host star evolves through the giant branches, including the asymptotic giant branch (AGB) phase, due to extreme luminosities and stellar outflows. In this work, we take the first steps towards understanding how a planet’s temperature profile and chemical composition is altered when the host star evolves from the MS to the AGB phase. We used a 1D radiative transfer code to compute the temperature-pressure profile and a 1D chemical kinetics code to simulate the disequilibrium chemistry. We consider a Jupiter-like planet around a Solar-type star in two evolutionary stages (MS and AGB planet) by only varying the stellar luminosity. We find that the temperature throughout the AGB planet’s atmosphere is increased by several hundreds of Kelvin compared to the MS planet. We also find that CO joins H2O and CH4 as a prominent constituent in the AGB planet’s atmospheric composition.

Type
Poster Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Agúndez, M., Parmentier, V., Venot, O., Hersant, F., & Selsis, F. 2014, A&A, 564, A73 10.1051/0004-6361/201322895CrossRefGoogle Scholar
Baeyens, R., Decin, L., Carone, L., et al. 2021, MNRAS, 505, 5603 10.1093/mnras/stab1310CrossRefGoogle Scholar
Baeyens, R., Konings, T., Venot, O., Carone, L., & Decin, L. 2022, MNRAS, 512, 4877 10.1093/mnras/stac809CrossRefGoogle Scholar
Lodders, K. & Fegley, B. 2002, Icarus, 155, 393 10.1006/icar.2001.6740CrossRefGoogle Scholar
Mollière, P., van Boekel, R., Dullemond, C., Henning, T., & Mordasini, C. 2015, ApJ, 813, 47 10.1088/0004-637X/813/1/47CrossRefGoogle Scholar
Montez, , Rodolfo, J., Ramstedt, S., Kastner, J. H., Vlemmings, W., & Sanchez, E. 2017, ApJ, 841, 33 10.3847/1538-4357/aa704dCrossRefGoogle Scholar
Spiegel, D. S. & Madhusudhan, N. 2012, ApJ, 756, 132 10.1088/0004-637X/756/2/132CrossRefGoogle Scholar
Venot, O., Cavalié, T., Bounaceur, R., et al. 2020, A&A, 634, A78 10.1051/0004-6361/201936697CrossRefGoogle Scholar
Visscher, C., Moses, J. I., & Saslow, S. A. 2010, Icarus, 209, 602 10.1016/j.icarus.2010.03.029CrossRefGoogle Scholar
Supplementary material: PDF

Konings et al. supplementary material

Konings et al. supplementary material

Download Konings et al. supplementary material(PDF)
PDF 8.9 MB