Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:03:08.723Z Has data issue: false hasContentIssue false

The fundamental plane of bulges at intermediate redshift

Published online by Cambridge University Press:  01 July 2007

Lauren A. MacArthur
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA email: [email protected]
Richard S. Ellis
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA email: [email protected]
Tommaso Treu
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on a new study aimed at understanding the diversity and evolutionary properties of distant galactic bulges in the context of well-established trends for pure spheroidal galaxies. Bulges have been isolated for a sample of 137 spiral galaxies in the GOODS fields within the redshift range 0.1 < z < 1.2. Using proven photometric techniques we determine for each galaxy the characteristic parameters (size, surface brightness, profile shape) in the 4 GOODS-ACS imaging bands of both the disk and bulge components. Using the DEIMOS spectrograph on Keck, precision stellar velocity dispersions were secured for a sizeable fraction of the bulges. This has enabled us to compare the Fundamental Plane of our distant bulges with that of field spheroidal galaxies in a similar redshift range. Bulges in spiral galaxies with a bulge-to-total luminosity ratio (B/T) > 0.2 show very similar patterns of evolution to those seen for low luminosity spheroidals. To first order, their recent mass assembly histories are equivalent.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bruzual, A. G. & Charlot, S. 2003, MNRAS, 344, 1000 [BC03]Google Scholar
Bundy, K., Ellis, R. S., & Conselice, C. J. 2005, ApJ, 625, 621CrossRefGoogle Scholar
Cappellari, M., et al. 2006, MNRAS, 366, 1126CrossRefGoogle Scholar
Ellis, R. S., Abraham, R. G., & Dickinson, M. 2001, ApJ, 551, 111 [EAD]CrossRefGoogle Scholar
Giavalisco, M., et al. 2004, ApJL, 600, L93CrossRefGoogle Scholar
Koo, D. C., et al. 2005, ApJS, 157, 175Google Scholar
MacArthur, L. A., Courteau, S., & Holtzman, J. A. 2003, ApJ, 582, 689 [Mac03]Google Scholar
Treu, T., et al. 2005, ApJ, 633, 174 [T05]CrossRefGoogle Scholar
Trujillo, I., Burkert, A., & Bell, E. F. 2004, ApJL, 600, L39 [Truj04]CrossRefGoogle Scholar
van der Marel, R. P. 1994, MNRAS, 270, 271CrossRefGoogle Scholar
van der Wel, A., et al. 2005, ApJ, 631, 145Google Scholar