Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T05:18:19.413Z Has data issue: false hasContentIssue false

Fundamental parameters of “normal” B stars in the solar neighborhood

Published online by Cambridge University Press:  12 July 2011

Maria-Fernanda Nieva
Affiliation:
Max-Planck-Institut für Astrophysik, Postfach 1317, D-85741 Garching, Germany email: [email protected]
Norbert Przybilla
Affiliation:
Dr. Karl Remeis-Observatory Bamberg & ECAP, University Erlangen-Nuremberg, Sternwartstr. 7, D-96049 Bamberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding phenomena of activity in stars, like pulsations or magnetism, benefits from systematic comparisons of some key physical parameters of active with those of “normal” stars. Here we concentrate on a careful derivation of fundamental parameters of a well selected sample of 27 “normal” B stars in nearby OB associations and in the field. A quantitative spectral analysis methodology based on hybrid non-LTE techniques is applied to high-resolution and high-S/N spectra. Results derived from the pure spectroscopic analysis are compared to other data/indicators of stellar parameters in order to prove the reliability of the method. Very good agreement is obtained among all of them. Besides the fundamental parameters, the chemical composition of the stars is also determined at high precision, turning out to be highly homogeneous. A comparative study of the present results with those of well known active massive stars will help to improve our understanding of the driving mechanisms of activity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Adelman, S. J., Pintado, O. I., Nieva, M. F., Rayle, K. E. et al. 2002, A&A, 392, 1031Google Scholar
Butler, K., & Giddings, J. R. 1985, Newsletter of Analysis of Astronomical Spectra, No. 9 (Univ. London)Google Scholar
Briquet, M., Aerts, C., Baglin, A., Nieva, M.F. et al. 2010, A&A, submittedGoogle Scholar
Giddings, J. R. 1981, Ph.D. Thesis (Univ. London)Google Scholar
Kurucz, R. L. 1993a, Smithsonian Astrophys. Obs., CD-ROM No. 2–12Google Scholar
Kurucz, R. L. 1993b, Smithsonian Astrophys. Obs., CD-ROM No. 13Google Scholar
Maeder, A. 2009, Physics, Formation and Evolution of Rotating Stars, Astronomy and Astrophysics Library (Springer Berlin Heidelberg)CrossRefGoogle Scholar
Martins, F., Schaerer, D., & Hillier, D. J. 2005, A&A, 436, 1049Google Scholar
Meynet, G. & Maeder, A. 2003, A&A, 411, 543Google Scholar
Nieva, M. F. & Przybilla, N. 2007, A&A, 467, 295Google Scholar
Nieva, M. F. & Przybilla, N. 2008, A&A, 481, 199Google Scholar
Nieva, M.-F. & Przybilla, N. 2010, in: Leitherer, C., Bennett, P., Morris, P., & van Loon, J. (eds.), Hot and Cool: Bridging Gaps in Massive Star Evolution, ASP-CS 425, p. 146Google Scholar
Przybilla, N. 2008, in: Röser, S. (eds.), Reviews in Modern Astronomy, 20, p. 323CrossRefGoogle Scholar
Przybilla, N., Nieva, M.-F., & Butler, K. 2008, ApJ (Letters), 688, L103CrossRefGoogle Scholar
Vacca, W. D., Garmany, C. D., & Shull, J. M. 1996, ApJ, 460, 914CrossRefGoogle Scholar
Van Leeuwen, F. 2007, Hipparcos, the New Reduction of the Raw Data, Astrophysics and Space Science Library 350CrossRefGoogle Scholar
Ramspeck, M., Heber, U., & Edelmann, H. 2001, A&A, 379, 235Google Scholar
Repolust, T., Puls, J., & Herrero, A. 2004, A&A, 415, 349Google Scholar