Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:51:31.176Z Has data issue: false hasContentIssue false

Fullerenes in Circumstellar and Interstellar Environments

Published online by Cambridge University Press:  21 December 2011

Jan Cami
Affiliation:
Department of Physics & Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada email: [email protected] SETI Institute, 189 Bernardo Ave, Mountain View, CA 94043, USA
Jeronimo Bernard-Salas
Affiliation:
Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud 11, 91405 Orsay, France Cornell University, 222 Space Sciences Bld., Ithaca, NY 14853, USA
Els Peeters
Affiliation:
Department of Physics & Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada email: [email protected] SETI Institute, 189 Bernardo Ave, Mountain View, CA 94043, USA
Sarah E. Malek
Affiliation:
Department of Physics & Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We recently identified several emission bands in the Spitzer-IRS spectrum of the unusual planetary nebula Tc 1 with the infrared active vibrational modes of the neutral fullerene species C60 and C70. Since then, the fullerene bands have been detected in a variety of sources representing circumstellar and interstellar environments. Abundance estimates suggest that C60 represents ~0.1%–1.5% of the available carbon in those sources. The observed relative band intensities in various sources are not fully compatible with single-photon heating and fluorescent cooling, and are better reproduced by a thermal distribution at least in some sources. The observational data suggests that fullerenes form in the circumstellar environments of evolved stars, and survive in the interstellar medium. Precisely how they form is still a matter of debate.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bakes, E. L. O., Tielens, A. G. G. M., Bauschlicher, C. W. Jr., Hudgins, D. M., & Allamandola, L. J., 2001, ApJ 560, 261Google Scholar
Bettens, R. P. A. & Herbst, E., 1995, International Journal of Mass Spectrometry and Ion Processes 149, 321Google Scholar
Bohme, D. K., 2009, Mass Spectrometry Reviews 28, 672Google Scholar
Cami, J., Bernard-Salas, J., Peeters, E., & Malek, S. E., 2010, Science 329, 1180Google Scholar
Cataldo, F. & Iglesias-Groth, S., 2009 400, 291CrossRefGoogle Scholar
Choi, C. H., Kertesz, M., & Mihaly, L., 2000, The Journal of Physical Chemistry A 104, 102Google Scholar
Clayton, G. C., De Marco, O., Whitney, B. A., et al. , 2011, ArXiv e-printsGoogle Scholar
Clayton, G. C., Kelly, D. M., Lacy, J. H., et al. , 1995, AJ 109, 2096CrossRefGoogle Scholar
de Vries, M. S., Reihs, K., Wendt, H. R., et al. , 1993, Geochim. Cosmochim. Acta 57, 933CrossRefGoogle Scholar
Fabian, J., 1996, Phys. Rev. B 53, 13864Google Scholar
Foing, B. H. & Ehrenfreund, P., 1994, Nat 369, 296CrossRefGoogle Scholar
Foing, B. H. & Ehrenfreund, P., 1997, A&A 317, L59Google Scholar
Frum, C. I., Engleman, R., Hedderich, H. G., et al. , 1991, Chem. Phys. Lett. 176, 504Google Scholar
Fulara, J., Jakobi, M., & Maier, J. P., 1993, Chem. Phys. Lett. 211, 227Google Scholar
García-Hernández, D. A., Kameswara Rao, N., & Lambert, D. L., 2011, ApJ 729, 126Google Scholar
García-Hernández, D. A., Manchado, A., García-Lario, P., et al. , 2010, ApJ Lett. 724, L39Google Scholar
Gielen, C. A., Cami, J., Bouwman, J., & Min, M., 2011, submitted to A&AGoogle Scholar
Grishko, V. I., Tereszchuk, K., Duley, W. W., & Bernath, P., 2001, ApJ Lett. 558, L129Google Scholar
Herbig, G. H., 2000, ApJ 542, 334Google Scholar
Hony, S., Waters, L. B. F. M., & Tielens, A. G. G. M., 2002, A&A 390, 533Google Scholar
Houck, J. R., Roellig, T. L., van Cleve, J., et al. , 2004, ApJS 154, 18Google Scholar
Iglesias-Groth, S., Cataldo, F., & Manchado, A., 2011 413, 213Google Scholar
Jäger, C., Huisken, F., Mutschke, H., Jansa, I. L., & Henning, T., 2009, ApJ 696, 706Google Scholar
Joblin, C., Toublanc, D., Boissel, P., & Tielens, A. G. G. M., 2002, Molecular Physics 100, 3595CrossRefGoogle Scholar
Krätschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R., 1990, Nat 347, 354Google Scholar
Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F., & Smalley, R. E., 1985, Nat 318, 162Google Scholar
Kroto, H. W. & McKay, K., 1988, Nat 331, 328Google Scholar
Martin, M. C., Koller, D., & Mihaly, L., 1993, Phys. Rev. B 47, 14607CrossRefGoogle Scholar
Mendez, R. H., Kudritzki, R. P., Herrero, A., Husfeld, D., & Groth, H. G., 1988, A&A 190, 113Google Scholar
Micelotta, E. R., Jones, A. P., & Tielens, A. G. G. M., 2010a, A&A 510, A37+Google Scholar
Micelotta, E. R., Jones, A. P., & Tielens, A. G. G. M., 2010b, A&A 510, A36+Google Scholar
Milanova, Y. V. & Kholtygin, A. F., 2009, Astronomy Letters 35, 518CrossRefGoogle Scholar
Misawa, T., Gandhi, P., Hida, A., Tamagawa, T., & Yamaguchi, T., 2009, ApJ 700, 1988Google Scholar
Moutou, C., Sellgren, K., Verstraete, L., & Léger, A., 1999, A&A 347, 949Google Scholar
Nemes, L., Ram, R., Bernath, P., et al. , 1994, Chem. Phys. Lett. 218, 295Google Scholar
Rubin, R. H., Simpson, J. P., O'Dell, C. R., et al. , 2011, MNRAS 410, 1320Google Scholar
Schettino, V., Pagliai, M., & Cardini, G., 2002, JOURNAL OF PHYSICAL CHEMISTRY A 106, 1815CrossRefGoogle Scholar
Scott, A., Duley, W. W., & Pinho, G. P., 1997, ApJ Lett. 489, L193+Google Scholar
Sellgren, K., Uchida, K. I., & Werner, M. W., 2007, ApJ 659, 1338CrossRefGoogle Scholar
Sellgren, K., Werner, M. W., Ingalls, J. G., et al. , 2010, ApJ Lett. 722, L54CrossRefGoogle Scholar
Snow, T. P. & Seab, C. G., 1989, A&A 213, 291Google Scholar
Sogoshi, N., Kato, Y., Wakabayashi, T., et al. , 2000, Journal of Physical Chemistry A 104, 3733Google Scholar
Somerville, W.B. & Bellis, J.G., 1989 240, 41PGoogle Scholar
Speck, A. K., Corman, A. B., Wakeman, K., Wheeler, C. H., & Thompson, G., 2009, ApJ 691, 1202Google Scholar
Stratmann, R., Scuseria, G., & Frisch, M., 1998, Journal of Raman Spectroscopy 29, 483Google Scholar
Tielens, A. G. G. M., 2005, The Physics and Chemistry of the Interstellar MediumGoogle Scholar
von Czarnowski, A. & Meiwes-Broer, K. H., 1995, Chemical Physics Letters 246, 321Google Scholar
Wang, X. K., Lin, X. W., Mesleh, M., et al. , 1995, Journal of Materials Research 10, 1977Google Scholar
Werner, M. W., Roellig, T. L., Low, F. J., et al. , 2004, ApJS 154, 1Google Scholar
Williams, R., Jenkins, E. B., Baldwin, J. A., et al. , 2008, ApJ 677, 1100CrossRefGoogle Scholar
Zhang, Y. & Kwok, S., 2011, ApJ 730, 126Google Scholar