Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T14:01:17.905Z Has data issue: false hasContentIssue false

Fullerenes as carriers of extinction, diffuse interstellar bands and anomalous microwave emission

Published online by Cambridge University Press:  01 February 2008

Susana Iglesias-Groth*
Affiliation:
Instituto de Astrofísica de Canarias, C/Via Láctea sn, 38200, La Laguna, Spain email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

According to semiempirical models, photoabsorption by fullerenes (single and multishell) could explain the shape, width and peak energy of the most prominent feature of the interstellar absorption, the UV bump at 2175 Å. Other weaker transitions are predicted in the optical and near-infrared providing a potential explanation for diffuse interstellar bands. In particular, we find that several fullerenes could contribute to the well known strong DIB at 4430 Å. Comparing cross sections and available data for this DIB and the UV bump we estimate a density of fullerenes in the diffuse interstellar medium of 0.1–0.2 ppm. These molecules could then be a major reservoir for interstellar carbon. We also study the rotation rates and electric dipole emission of hydrogenated icosahedral fullerenes. We investigate these molecules as potential carriers of the anomalous (dust-correlated) microwave emission recently detected by several cosmic microwave background experiments.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Becker, L. & Bunch, T. E. 1997, Meteorit. Planet. Sci., 32, 479CrossRefGoogle Scholar
Casassus, S., Cabrera, G., Forster, F., Pearson, T. J., Readhead, A. C. S., & Dickinson, C. 2006, ApJ, 639, 951CrossRefGoogle Scholar
Chhowalla, M., Wang, H., Sano, N., Teo, K. B. K., Lee, S. B., & Amaratunga, G. A. J. 2003, Phys. Rev. Lett., 90, 155504CrossRefGoogle Scholar
Draine, B. T. & Lazarian, A. 1998a, ApJ (Letters), 494, L19CrossRefGoogle Scholar
de Oliveira-Costa, A. et al. 1999, ApJ (Letters), 527, L9CrossRefGoogle Scholar
de Oliveira-Costa, A. et al. 2004, ApJ (Letters), 606, L89CrossRefGoogle Scholar
Désert, F. X., Jenniskens, P., & Dennefeld, M. 1995, A & A, 303, 223Google Scholar
Finkbeiner, D. P., Langston, G. I., & Minter, A. H. 2004, ApJ, 617, 350CrossRefGoogle Scholar
Foing, B. F. & Ehrenfreund, P. 1994, Nature, 369, 296CrossRefGoogle Scholar
Herbig, G. H. 1995, ARAA, 33, 19CrossRefGoogle Scholar
Henrard, L., Lambin, Ph., & Lucas, A. A. 1997, ApJ, 487, 719CrossRefGoogle Scholar
Hildebrandt, S. R., Rebolo, R., Rubiño-Martín, J. A., Watson, R. A., Gutiérrez, C. M., Hoyland, R. J., & Battistelli, E. S. 2007, MNRAS, 382, 594CrossRefGoogle Scholar
Iglesias-Groth, S. 2004, ApJ (Letters), 608, L37CrossRefGoogle Scholar
Iglesias-Groth, S. 2005, ApJ (Letters), 632, L25CrossRefGoogle Scholar
Iglesias-Groth, S. 2006, MNRAS, 368, 1925CrossRefGoogle Scholar
Iglesias-Groth, S. 2007, ApJ (Letters) 661, L167CrossRefGoogle Scholar
Iglesias-Groth, S. & Bretón, J. 2000, A&A, 357, 782Google Scholar
Iglesias-Groth, S., Ruiz, A., Bretón, J., & Gómez Llorente, J. M. 2002, J. Chem. Phys., 116, 1648CrossRefGoogle Scholar
Iglesias-Groth, S., Ruiz, A., Bretón, J., & GómezLlorente, J. M. Llorente, J. M. 2003, J. Chem. Phys., 118, 7103CrossRefGoogle Scholar
Kogut, A. et al. 1996, ApJ, 460, 1CrossRefGoogle Scholar
Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F., & Smalley, R. E. 1985, Nature, 318, 162CrossRefGoogle Scholar
Leitch, E. M., Readhead, A. C. S., Pearson, T. J., & Myers, S.T. 1997, ApJ (Letters), 486, L23CrossRefGoogle Scholar
Watson, R. A. et al. 2005, ApJ, 624, L89CrossRefGoogle Scholar
Webster, A. S. 1991, Nature, 352, 412CrossRefGoogle Scholar
Webster, A. S. 1992, A&A, 257, 750Google Scholar
Webster, A. S. 1993, MNRAS, 263, 385CrossRefGoogle Scholar
Webster, A. S. 1995, MNRAS, 277, 1555CrossRefGoogle Scholar