Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T05:22:26.776Z Has data issue: false hasContentIssue false

From molecules to dust grains: The role of alumina cluster seeds

Published online by Cambridge University Press:  12 October 2020

David Gobrecht
Affiliation:
Institute of Astronomy, KU Leuven, B-3001, Leuven, Belgium email: [email protected]
John M.C. Plane
Affiliation:
School of Chemistry, Leeds University, Box 515, GB-75120 Leeds, Great Britain
Stefan T. Bromley
Affiliation:
Departament de Ciència de Materials i Química Física & Institut de Química Téorica i Computacional (IQTCUB), Universitat de Barcelona, E-08028 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
Leen Decin
Affiliation:
Institute of Astronomy, KU Leuven, B-3001, Leuven, Belgium email: [email protected]
Sergio Cristallo
Affiliation:
INAF - Osservatorio Astronomico d'Abruzzo, Via mentore maggini, I-64100 Teramo, Italy INFN - Sezione di Perugia, via A. Pascoli, I-06123, Perugia, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Asymptotic Giant Branch (AGB) stars contribute a major part to the global dust budget in galaxies. Owing to their refractory nature alumina (stoichiometric formula AlO) is a promising candidate to be the first condensate emerging in the atmospheres of oxygen-rich AGB stars. Strong evidence for that is supplied by the presence of alumina in pristine meteorites and a broad spectral feature observed around ∼ 13 μm. The emergence of a specific condensate depends on the thermal stability of the solid, the gas density and its composition. The evaluation of the condensates is based on macroscopic bulk properties. The growth and size distribution of dust grains is commonly described by Classical Nucleation Theory (CNT). We question the applicability of CNT in an expanding circumstellar envelope as CNT presumes thermodynamic equilibrium and requires, in practise, seed nuclei on which material can condense. However, nano-sized molecular clusters differ significantly from bulk analogues. Quantum effects of the clusters lead to non-crystalline structures, whose characteristics (energy, geometry) differ substantially, compared to the bulk material. Hence, a kinetic quantum-chemical treatment involving various transition states describes dust nucleation most accurately. However, such a treatment is prohibitive for systems with more than 10 atoms. We discuss the viability of chemical-kinetic routes towards the formation of the monomer (Al2O3) and the dimer (Al4O6) of alumina.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Agúndez, M., Cernicharo, J., Guélin, M., 2010, ApJ, 724, 13310.1088/2041-8205/724/2/L133CrossRefGoogle Scholar
Bromley, S. T., Gómez-Martín, J. C., Plane, J. M. C. 2016, PCCP, 18, 2691310.1039/C6CP03629ECrossRefGoogle Scholar
Boulangier, J. Gobrecht, D., Decin, L. de Koter, A., Yates, J. 2019, MNRAS, 489, 489010.1093/mnras/stz2358CrossRefGoogle Scholar
Chen, M. Felmy, A. R., Dixon, D. A. 2014, JPCA, 118, 313610.1021/jp412820zCrossRefGoogle Scholar
Decin, L. De Beck, E., Brünken, S., Müller, H. S. P., Menten, K. M., Kim, H., Willacy, K., de Koter, A., Wyrowski, F. 2010, A&A, 516, 69Google Scholar
Decin, L. Justtanont, K. De Beck, E., Lombaert, R., de Koter, A., Waters, L. B. F. M., Marston, A. P., Teyssier, D., Schöier, F. L., Bujarrabal, V., Alcolea, J., Cernicharo, J. et al. 2010, A&A, 521, 4Google Scholar
Decin, L. Richards, A. M. S., Waters, L. B. F. M., Danilovich, T., Gobrecht, D., Khouri, T., Homan, W., Bakker, J. M., Van de Sande, M., Nuth, J. A., De Beck, E. 2017, A&A, 608, 55Google Scholar
Gaydon, A. G. 1947, Dissociation energies and spectra of diatomic molecules, Wiley New YorkGoogle Scholar
Gobrecht, D. Cherchneff, I., Sarangi, A. Plane, J. M. C., Bromley, S. T. 2016, A&A, 585, 15Google Scholar
Gobrecht, D. Cristallo, S., Piersanti, L. Bromley, S. T. 2017, ApJ, 840, 11710.3847/1538-4357/aa6db0CrossRefGoogle Scholar
Goumans, T. P. M., Bromley, S. T. 2012, MNRAS, 420, 3344Google Scholar
Henning, Th. 2010, Lecture Notes in Physics, 81510.1007/978-3-642-13259-9CrossRefGoogle Scholar
Johansson, L. E. B., Andersson, C., Ellder, J., Friberg, P., Hjalmarson, A., Hoglund, B., Irvine, W. M., Olofsson, H., Rydbeck, G. 1984, A&A, 130, 227Google Scholar
Justtanont, K. Feuchtgruber, H. de Jong, T., Cami, J., Waters, L. B. F. M., Yamamura, I., Onaka, T. 1998, A&A, 330, 17Google Scholar
Karovicova, I. Wittkowski, M., Ohnaka, K. Boboltz, D. A., Fossat, E., Scholz, M. 2013, A&A, 560, 75Google Scholar
Koehler, T. M., Gail, H.-P., Sedlmayr, E. 1997, A&A, 320, 553Google Scholar
Lamiel-Garcia, O., Ko, K. C., Lee, J. Y., Bromley, S. T., Illas, F. 2017, J. Chem. Theory Comput., 13, 1785CrossRefGoogle Scholar
Li, R. Cheng, L. 2012, Comput. Theor. Chem., 996, 125Google Scholar
Lindqvist, M. Nyman, L.-A., Olofsson, H., Winnberg, A. 1988, A&A, 205, 15Google Scholar
Neufeld, D. A., González-Alfonso, E., Melnick, G. J., Szczerba, R., Schmidt, M., Decin, L, de Koter, A., Schöier, F., Cernicharo, J. 2011, ApJL, 727, 2810.1088/2041-8205/727/2/L28CrossRefGoogle Scholar
Posch, T. Kerschbaum, F., Mutschke, H. Fabian, D., Dorschner, J., Hron, J. 1999, A&A, 352, 609Google Scholar
Sloan, G. C., Kraemer, K. E., Goebel, J. H., P, S. D. 2003, ApJ, 594, 48310.1086/376857CrossRefGoogle Scholar
Tenenbaum, E. D., Ziurys, L. M. 2010, ApJ, 712, 9310.1088/2041-8205/712/1/L93CrossRefGoogle Scholar
Turner, B. E., Steimle, T. C. 1985, ApJ, 299, 95610.1086/163762CrossRefGoogle Scholar
Van de Sande, M., Sundqvist, J. O., Millar, T. J., Keller, D., Homan, W., de Koter, A., Decin, L., De Ceuster, F. 2018, A&A, 616, 106Google Scholar
Wetzel, S. Klevenz, M., Gail, H.-P., Pucci, A., Trieloff, M. 2013, A&A, 553, 92Google Scholar
Woitke, P. 2006, A&A, 460, 9Google Scholar