Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T08:42:36.578Z Has data issue: false hasContentIssue false

From convective to stellar dynamos

Published online by Cambridge University Press:  12 August 2011

Axel Brandenburg
Affiliation:
NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden Department of Astronomy, Stockholm University, SE-10691 Stockholm, Sweden
Petri J. Käpylä
Affiliation:
NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden Department of Physics, PO Box 64, FI-00014 University of Helsinki, Finland
Maarit J. Korpi
Affiliation:
Department of Physics, PO Box 64, FI-00014 University of Helsinki, Finland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Convectively driven dynamos with rotation generating magnetic fields on scales large compared with the scale of the turbulent eddies are being reviewed. It is argued that such fields can be understood as the result of an α effect. Simulations in Cartesian domains show that such large-scale magnetic fields saturate on a time scale compatible with the resistive one, suggesting that the magnitude of the α effect is here still constrained by approximate magnetic helicity conservation. It is argued that, in the absence of shear and/or any other known large-scale dynamo effects, these simulations prove the existence of turbulent α2-type dynamos. Finally, recent results are discussed in the context of solar and stellar dynamos.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Berger, M. A. & Ruzmaikin, A. 2000, J. Geophys. Res., 105, 10481CrossRefGoogle Scholar
Blackman, E. G. & Brandenburg, A. 2003, ApJ, 584, L99CrossRefGoogle Scholar
Boldyrev, S. & Cattaneo, F. 2004, Phys. Rev. Lett., 92, 144501CrossRefGoogle Scholar
Brandenburg, A. 2001, ApJ, 550, 824CrossRefGoogle Scholar
Brandenburg, A. 2005, ApJ, 625, 539CrossRefGoogle Scholar
Brandenburg, A. 2005, Astron. Nachr., 326, 787CrossRefGoogle Scholar
Brandenburg, A. 2009, ApJ, 697, 1206CrossRefGoogle Scholar
Brandenburg, A. 2009, Space Sci. Rev., 144, 87CrossRefGoogle Scholar
Brandenburg, A. 2011, Astron. Nachr., 332, 51CrossRefGoogle Scholar
Brandenburg, A. & Subramanian, K. 2005, Phys. Rep., 417, 1CrossRefGoogle Scholar
Brandenburg, A., Blackman, E. G., & Sarson, G. R. 2003, Adv. Space Sci., 32, 1835CrossRefGoogle Scholar
Brandenburg, A., Rädler, K.-H., Rheinhardt, M., & Käpylä, P. J. 2008, ApJ, 676, 740CrossRefGoogle Scholar
Brandenburg, A., Candelaresi, S., & Chatterjee, P. 2009, MNRAS, 398, 1414CrossRefGoogle Scholar
Brandenburg, A., Subramanian, K., Balogh, A., & Goldstein, M. L. 2011, arXiv:1101.1709Google Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2010, ApJ, 711, 424CrossRefGoogle Scholar
Candelaresi, S., Hubbard, A., Brandenburg, A., & Mitra, D. 2011, Phys. Plasmas, 18, 012903CrossRefGoogle Scholar
Cattaneo, F. & Hughes, D. W. 1996, Phys. Rev. E, 54, R4532CrossRefGoogle Scholar
Cattaneo, F. & Hughes, D. W. 2006, J. Fluid Mech., 553, 401CrossRefGoogle Scholar
Choudhuri, A. R., Schüssler, M. & Dikpati, M. 1995, A&A, 303, L29Google Scholar
Dikpati, M. & Charbonneau, P. 1999, ApJ, 518, 508CrossRefGoogle Scholar
Dobler, W., Haugen, N. E. L., Yousef, T. A. & Brandenburg, A. 2003, Phys. Rev. E, 68, 026304CrossRefGoogle Scholar
Durney, B. R. 1995, Solar Phys., 160, 213CrossRefGoogle Scholar
Falkovich, G. 1994, Phys. Fluids, 6, 1411CrossRefGoogle Scholar
Ghizaru, M., Charbonneau, P. & Smolarkiewicz, P. K. 2010, ApJ, 715, L133CrossRefGoogle Scholar
Gilman, P. A. 1983, ApJS, 53, 243CrossRefGoogle Scholar
Glatzmaier, G. A. & Roberts, P. H. 1995, Nature, 377, 203CrossRefGoogle Scholar
Haugen, N. E. L., Brandenburg, A. & Dobler, W. 2004, Phys. Rev. E, 70, 016308CrossRefGoogle Scholar
Hubbard, A. & Brandenburg, A. 2010, Geophys. Astrophys. Fluid Dyn., 104, 577CrossRefGoogle Scholar
Hughes, D. W. & Cattaneo, F. 2008, J. Fluid Mech., 594, 445CrossRefGoogle Scholar
Hughes, D. W. & Proctor, M. R. E. 2009, Phys. Rev. Lett., 102, 044501CrossRefGoogle Scholar
Hughes, D. W., Proctor, M. R. E. & Cattaneo, F. 2011, arXiv:1103.0754Google Scholar
Iskakov, A. B., Schekochihin, A. A., Cowley, S. C., McWilliams, J. C. & Proctor, M. R. E. 2007, Phys. Rev. Lett., 98, 208501CrossRefGoogle Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2008, A&A, 491, 353Google Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2009a, A&A, 500, 633Google Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2009, ApJ, 697, 1153CrossRefGoogle Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2010a, MNRAS, 402, 1458CrossRefGoogle Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2010b, A&A, 518, A22Google Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A., Mitra, D., & Tavakol, R. 2010b, Astron. Nachr., 331, 73CrossRefGoogle Scholar
Krause, F. & Rädler, K.-H. 1980 Mean-field magnetohydrodynamics and dynamo theory Pergamon Press, OxfordGoogle Scholar
Matthaeus, W. H., Goldstein, M. L., & Smith, C. 1982, Phys. Rev. Lett., 48, 1256CrossRefGoogle Scholar
Mininni, P. D. 2007, Phys. Rev. E, 76, 026316CrossRefGoogle Scholar
Mitra, D., Candelaresi, S., Chatterjee, P., Tavakol, R., & Brandenburg, A. 2010a, Astron. Nachr., 331, 130CrossRefGoogle Scholar
Mitra, D., Tavakol, R., Käpylä, P. J., & Brandenburg, A. 2010b, ApJ, 719, L1CrossRefGoogle Scholar
Moffatt, H.K. 1978 Magnetic field generation in electrically conducting fluids Cambridge University Press, CambridgeGoogle Scholar
Novikov, V. G., Ruzmaikin, A. A., & Sokoloff, D. D. 1983, Sov. Phys. JETP, 58, 527Google Scholar
Parker, E. N. 1979 Cosmical magnetic fields Oxford University Press, New YorkGoogle Scholar
Proctor, M. R. E. 2007, MNRAS, 382, L39CrossRefGoogle Scholar
Rogachevskii, I. & Kleeorin, N. 2003, Phys. Rev. E, 68, 036301CrossRefGoogle Scholar
Rogachevskii, I. & Kleeorin, N. 2004, Phys. Rev. E, 70, 046310CrossRefGoogle Scholar
Rüdiger, G. 1980, Geophys. Astrophys. Fluid Dyn., 16, 239CrossRefGoogle Scholar
Rüdiger, G. 1989 Differential rotation and stellar convection: Sun and solar-type stars Gordon & Breach, New YorkCrossRefGoogle Scholar
Schekochihin, A. A., Haugen, N. E. L., Brandenburg, A., Cowley, S. C., Maron, J. L., & McWilliams, J. C. 2005, ApJ, 625, L115CrossRefGoogle Scholar
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M. & Christensen, U. 2005, Astron. Nachr., 326, 245CrossRefGoogle Scholar
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., & Christensen, U. R. 2007, Geophys. Astrophys. Fluid Dyn., 101, 81CrossRefGoogle Scholar
Subramanian, K. 1999, Phys. Rev. Lett., 83, 2957CrossRefGoogle Scholar
Subramanian, K. & Brandenburg, A. 2006, ApJ, 648, L71CrossRefGoogle Scholar
Vainshtein, S. I. & Cattaneo, F. 1992, ApJ, 393, 165CrossRefGoogle Scholar
Vishniac, E. T. & Brandenburg, A. 1997, ApJ, 475, 263CrossRefGoogle Scholar
Warnecke, J. & Brandenburg, A. 2010, A&A, 523, A19Google Scholar
Yousef, T. A. & Brandenburg, A. 2003, A&A, 407, 7Google Scholar
Yousef, T. A., Heinemann, T., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I., Iskakov, A. B., Cowley, S. C. & McWilliams, J. C. 2008a, Phys. Rev. Lett., 100, 184501CrossRefGoogle Scholar
Yousef, T. A., Heinemann, T., Rincon, F., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I., Cowley, S. C., & McWilliams, J. C. 2008b, Astron. Nachr., 329, 737CrossRefGoogle Scholar