Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T12:05:27.188Z Has data issue: false hasContentIssue false

The Frequency Distribution of Semimajor Axes of Wide Binaries: Cosmogony and Dynamical Evolution

Published online by Cambridge University Press:  12 July 2007

Arcadio Poveda
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510MéxicoD.F. email: [email protected]
Christine Allen
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510MéxicoD.F. email: [email protected]
A. Hernández-Alcántara
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510MéxicoD.F. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The frequency distribution f(a) of semimajor axes of double and multiple systems, and their eccentricities and mass ratios, contain valuable fossil information about the process of star formation and the dynamical history of the systems. In order to advance in the understanding of these questions, we made an extensive analysis of the frequency distribution f(a) for wide binaries (a > 25 AU) in various published catalogues, as well as in our own (Poveda et al 1994; Allen et al 2000; (Poveda & Hernández–Alcántara 2003). Based upon all these studies we have established that the frequency distribution f(a) is a function of the age of the system and follows Öpik's distribution f(a) ∼ 1/a in the range of 100 AU < a < ac(t), where ac (t) are the critical semimajor axes beyond which binaries have been dissociated by encounters with massive objects. We argue that the physics behind the distribution f(a) ∼ 1/a is a process of energy relaxation, analogous to those present in stellar clusters (secular relaxation) or in the early stages of spherical galaxies (violent relaxation). The existence of runaway stars indicates that both types of relaxation are important in the process of binary and multiple star dynamical evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Allen, C. 1968 Thesis Universidad Nacional Autónoma de MéxicoGoogle Scholar
Allen, C., Poveda, A., & Herrera, M.A. 2000, A&A 356, 529 Google Scholar
Chanamé, J. & Gould, A. 2004, ApJ 601, 289 CrossRefGoogle Scholar
Couteau, P. 1960, J des Observateurs 43, 41 Google Scholar
Duquennoy, A. & Mayor, M. 1991, A&A 248, 495 Google Scholar
Gliese, W. & Jahreiss, H. 1991, in: Brotzman, L.E., & Gessner, S.E. (eds.), Selected Astronomical Catalogs, VOL. I, NSSC, NASA, GSFC (GJ91)Google Scholar
Gómez, L., Rodríguez, L., Loinard, L., Lizano, S., Poveda, A., & Allen, C. 2005, ApJ 635, 1166 CrossRefGoogle Scholar
Gould, A. & Salim, G. 2003, ApJ 582, 1001 CrossRefGoogle Scholar
Heintz, W.D. 1969, JRASC 63, 275 Google Scholar
Hubble, E. 1930, ApJ 71, 231 CrossRefGoogle Scholar
Jones, B. & Walker, M.F. 1988, AJ 95, 1755 CrossRefGoogle Scholar
King, I.R. 1962, AJ 67, 471 CrossRefGoogle Scholar
Kuiper, G.P. 1935, PASP 47, 121 CrossRefGoogle Scholar
Kuiper, G.P. 1942, ApJ 95, 201 CrossRefGoogle Scholar
Luyten, W.J. 1940–87, Publ. Astr. Obs. Univ. Minnesota III, part 3, 35; Proper motion survey with the 48-inch Schmidt Telescope, XXI, XXV, XIX, XL, L, LXIV, LV, LXXI, Univ. Minnesota.Google Scholar
Öpik, E.J. 1924, Tartu Obs. Publ. 25, No. 6 Google Scholar
Poveda, A. & Allen, C. 2004, RevMexAA (SC) 21, 49 Google Scholar
Poveda, A., Herrera, M.A., Allen, C., Cordero, G., & Lavalley, C. 1994, RevMexAA 28, 43 Google Scholar
Poveda, A. & Hernández-Alcántara, A. in: Cheng, K. S., Leung, K. C., & Li, T. P. (eds.), Stellar Astrophysics: a Tribute to Helmut A. Abt, Sixth Pacific Rim Conference (Dordrecht: Kluwer), ASSL vol. 298, p. 111Google Scholar
Poveda, A., Allen, C. & Herrera, M.A. in: Docobo, J.A., Elipe, A., & McAlister, H. (eds.), Visual Double Stars: Formation, Dynamics and Evolutionary Tracks (Dortrecht:Kluwer), p. 191 Google Scholar
Poveda, A., Ruiz, J. & Allen, C. 1967, Bol. Obs. Ton. Tac 4, 86 Google Scholar
Press, W.H., Flannery, B., Teukolsky, S.A., & Vetterling, W.T. in: Numerical Recipes in C (Cambridge: Cambridge U. Press), p. 490 Google Scholar
Rodríguez, L.F., Poveda, A., Lizano, S., & Allen, C. 2005, ApJ 627, L65 CrossRefGoogle Scholar
Salim, S. & Gould, A. 2003, ApJ 582, 1011 CrossRefGoogle Scholar
Schuster, W.J. & Nissen, P.E. 1988, A&AS 73, 225 Google Scholar
Schuster, W.J. & Nissen, P.E. 1989a, A&A 221, 65 Google Scholar
Schuster, W.J. & Nissen, P.E. 1989b, A&AS 222, 69 Google Scholar
Vaucouleurs, G. de 1953, MNRAS 113, 134 CrossRefGoogle Scholar
Van Albada, T.S. 1982, MNRAS 201, 939 CrossRefGoogle Scholar
Weinberg, M.D., Shapiro, S.L. & Wasserman, I. 1987, ApJ 312, 367 CrossRefGoogle Scholar