Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-07T04:24:02.985Z Has data issue: false hasContentIssue false

Fragmentation of colliding planetesimals with water content

Published online by Cambridge University Press:  05 January 2015

Thomas I. Maindl
Affiliation:
Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, A-1180 Vienna, Austria email: [email protected], [email protected]
Rudolf Dvorak
Affiliation:
Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, A-1180 Vienna, Austria email: [email protected], [email protected]
Christoph Schäfer
Affiliation:
Institut für Astronomie und Astrophysik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany email: [email protected]
Roland Speith
Affiliation:
Physikalisches Institut, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, 72076 Täbingen, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the outcome of collisions of Ceres-sized planetesimals composed of a rocky core and a shell of water ice. These collisions are not only relevant for explaining the formation of planetary embryos in early planetary systems, but also provide insight into the formation of asteroid families and possible water transport via colliding small bodies. Earlier studies show characteristic collision velocities exceeding the bodies' mutual escape velocity which—along with the distribution of the impact angles—cover the collision outcome regimes ‘partial accretion’, ‘erosion’, and ‘hit-and-run’ leading to different expected fragmentation scenarios. Existing collision simulations use bodies composed of strengthless material; we study the distribution of fragments and their water contents considering the full elasto-plastic continuum mechanics equations also including brittle failure and fragmentation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Benz, W. & Asphaug, E. 1994, Icarus, 107, 98Google Scholar
Canup, R. M., Barr, A. C., & Crawford, D. A. 2013, Icarus, 222, 200Google Scholar
Dvorak, R., Eggl, S., Süli, Á., et al. 2012, in American Institute of Physics Conference Series, Vol. 1468, American Institute of Physics Conference Series, ed. Robnik, M. & Romanovski, V. G., 137–147Google Scholar
Grady, D. E. & Kipp, M. E. 1980, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17, 147Google Scholar
Leinhardt, Z. M. & Stewart, S. T. 2012, ApJ, 745, 79CrossRefGoogle Scholar
Maindl, T. I. & Dvorak, R. 2014, in IAU Symposium, Vol. 299, IAU Symposium, ed. Booth, M., Matthews, B. C., & Graham, J. R., 370–373CrossRefGoogle Scholar
Maindl, T. I., Dvorak, R., Speith, R., & Schäfer, C. 2014, ArXiv e-print arXiv:1401.0045Google Scholar
Maindl, T. I., Schäfer, C., Speith, R., et al. 2013, Astronomische Nachrichten, 334, 996CrossRefGoogle Scholar
Melosh, H. J. & Ryan, E. V. 1997, Icarus, 129, 562Google Scholar
Schäfer, C., Speith, R., & Kley, W. 2007, A&A, 470, 733Google Scholar