No CrossRef data available.
Article contents
Formation of the SMC WO+O binary AB8
Published online by Cambridge University Press: 30 December 2019
Abstract
Wolf-Rayet (WR) stars are stripped stellar cores that form through strong stellar wind or binary mass transfer. It is proposed that binary evolution plays a vital role in the formation of WR stars in low metallicity environments due to the metallicity dependance of stellar winds. However observations indicate a similar binary fraction of WR stars in the Small Magellanic Cloud (SMC) compared to the Milky Way. There are twelve WR stars in the SMC and five of them are members of binary systems. One of them (SMC AB8) harbors a WO type star. In this work we explore possible formation channels of this binary. We use the MESA code to compute large grids of binary evolution models, and then use least square fitting to compare our models with the observations. In order to reproduce the key properties of SMC AB8, we require efficient semiconvection to produce a sufficiently large convective core, as well as a longer He-burning lifetime. We also need a high mass loss rate during the WN stage to assist the removal of the outer envelope. In this way, we can reproduce the observed properties of AB8, except for the surface carbon to oxygen ratio, which requires further investigation.
- Type
- Contributed Papers
- Information
- Copyright
- © International Astronomical Union 2019