Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T12:55:42.598Z Has data issue: false hasContentIssue false

Formation of the planet orbiting the millisecond pulsar J1719–1438

Published online by Cambridge University Press:  20 March 2013

L. M. van Haaften
Affiliation:
Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands, email: [email protected]
G. Nelemans
Affiliation:
Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands, email: [email protected] Institute for Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
R. Voss
Affiliation:
Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands, email: [email protected]
P. G. Jonker
Affiliation:
Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands, email: [email protected] SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht, The Netherlands Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 2011, Bailes et al. reported on the discovery of a detached companion in a 131 minute orbit around PSR J1719–1438, a 173 Hz millisecond pulsar. The combination of the very low mass function and such a short orbital period is unique. The discoverers suggested that the progenitor system could be an ultracompact X-ray binary (UCXB), which is a binary with a sub-hour orbital period in which a (semi-)degenerate donor fills its Roche lobe and transfers mass to a neutron star. The standard gravitational-wave driven UCXB scenario, however, cannot produce a system like PSR J1719–1438 as it would take longer than the age of the Universe to reach an orbital period of 131 min. We investigate two modifications to the standard UCXB evolution that may resolve this discrepancy. The first involves significant heating and bloating of the donor by pulsar irradiation, and in the second modification the system loses orbital angular momentum via a fast stellar wind from the irradiated donor, additional to the losses via the usual gravitational wave radiation. In particular a donor wind is effective in accelerating orbital expansion, and even a mild wind could produce the 131 minute period within the age of the Universe. We note that UCXBs could be an important class of progenitors of solitary millisecond radio pulsars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Bailes, M., Bates, S. D., Bhalerao, V., et al. 2011, Science, 33, 1717CrossRefGoogle Scholar
Benvenuto, O. G., De Vito, M. A., & Horvath, J. E. 2012, ApJ, 753, L33CrossRefGoogle Scholar
Deloye, C. J. & Bildsten, L. 2003, ApJ, 598, 1217Google Scholar
Kataoka, J., Yatsu, Y., Kawai, N., et al. 2012, ApJ, 757, 176Google Scholar
Knigge, C., Baraffe, I., & Patterson, J. 2011, ApJS, 194, 28Google Scholar
Pletsch, H. J., Guillemot, L., Fehrmann, H., et al. 2012, Science, doi:10.1126/science.1229054Google Scholar
Rappaport, S., Ma, C. P., Joss, P. C., & Nelson, L. A. 1987, ApJ, 322, 842Google Scholar
Romani, R. W. 2012, ApJ, 754, L25CrossRefGoogle Scholar
Romani, R. W., Filippenko, A. V., Silverman, J. M., et al. 2012, ArXiv e-prints, 1210.6884v1Google Scholar
Ruderman, M., Shaham, J., & Tavani, M. 1989, ApJ, 336, 507Google Scholar
Savonije, G. J., de Kool, M., & van den Heuvel, E. P. J. 1986, A&A, 155, 51Google Scholar
van Haaften, L. M., Nelemans, G., Voss, R., & Jonker, P. G. 2012a, A&A, 541, A22Google Scholar
van Haaften, L. M., Nelemans, G., Voss, R., et al. 2012b, A&A, 537, A104Google Scholar
van Haaften, L. M., Voss, R., & Nelemans, G. 2012c, A&A, 543, A121Google Scholar