Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:34:04.007Z Has data issue: false hasContentIssue false

Formation of the First Stars and Blackholes

Published online by Cambridge University Press:  08 May 2018

Naoki Yoshida*
Affiliation:
Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033 Tokyo, the Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cosmic reionization is thought to be initiated by the first generation of stars and blackholes. We review recent progress in theoretical studies of early structure formation. Cosmic structure formation is driven by gravitational instability of primeval density fluctuations left over from Big Bang. At early epochs, there are baryonic streaming motions with significant relative velocity with respect to dark matter. The formation of primordial gas clouds is typically delayed by the streaming motions, but then physical conditions for the so-called direct collapse blackhole formation are realized in proto-galactic halos. We present a promising model in which intermediate mass blackholes are formed as early as z = 30.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Robertson, B., Ellis, R., Furlanetto, S., & Dunlop, J., 2015, ApJ, 802, L19Google Scholar
Inoue, A., Tamura, Y., Matsuo, H., et al. 2016, Science, 352, 1559Google Scholar
Banados, E., Venemans, B., Mazzucchelli, C., et al. 2017, Nature, doi:10.1038/nature25180Google Scholar
Yoshida, N., Abel, T., Hernquist, L., & Sugiyama, N., 2003, ApJ, 592, 645Google Scholar
Yoshida, N., Sokasian, A., Hernquist, L., & Springel, V., 2003, ApJ, 591, L1CrossRefGoogle Scholar
Hirano, S., Sullivan, J., & Bromm, V., 2018, MNRAS, 473, L6CrossRefGoogle Scholar
Valdes, M., Evoli, C., Mesinger, A., Ferrara, A., & Yoshida, N., 2013, MNRAS, 429, 1705Google Scholar
Cohen, A., Fialkov, A., Barkana, R., & Lotem, M., 2017, MNRAS, 472, 1915Google Scholar
Hirano, S., Yoshida, N., Sakurai, Y. & Fujii, M. 2017, arxiv:1711.07315Google Scholar
Tseliakhovich, D. & Hirata, C., 2010, PRD, 82, 3520Google Scholar
Naoz, S., Yoshida, N., & Gnedin, N., 2013, ApJ, 652, 6Google Scholar
Omukai, K. & Palla, F., 2003, ApJ, 652, 6Google Scholar
Yoshida, N., Omukai, K., Abel, T., & Hernquist, L., 2006, ApJ, 652, 6CrossRefGoogle Scholar
Hosokawa, T., Omukai, K., Yoshida, N., & Yorke, H., 2011, Science, 334, 1250Google Scholar
Hirano, S., Hosokawa, T., Yoshida, N., et al. 2014, ApJ, 781, 60Google Scholar
Hirano, S., Hosokawa, T., Yoshida, N., et al. 2015, MNRAS, 448, 568Google Scholar
Stacy, A., Bromm, V., & Lee, A., 2016, MNRAS, 462, 1307Google Scholar
Susa, H., Hasegawa, K., & Tominaga, N., 2014, ApJ, 792, 32Google Scholar
Katz, H., Sijacki, D., & Haehnelt, M., 2015, MNRAS, 451, 2352CrossRefGoogle Scholar
Sakurai, Y., Fujii, M., Yoshida, N., & Hirano, S., 2017, MNRAS, 472, 1677Google Scholar
Ebisuzaki, T., Makino, J., Tsuru, T., et al. 2001, ApJL, 562, 19Google Scholar
Madau, P. & Rees, M. J., 2001, ApJL, 551, 27CrossRefGoogle Scholar
Sakurai, Y., Vorobyov, E., Hosokawa, T., et al. 2016, MNRAS, 459, 1137CrossRefGoogle Scholar
Umeda, H., Hosokawa, T., Omukai, K., & Yoshida, N., 2016, ApJL, 830, 34Google Scholar
Aravena, M., Decarli, R., Walter, F., et al. 2016, ApJ, 833, 71CrossRefGoogle Scholar
Hayatsu, N., Matsuda, Y., Umehata, H., et al. 2017, PASJ, 69, 45CrossRefGoogle Scholar
Gong, Y., Cooray, A., Silva, M., et al. 2011, ApJL, 728, 46Google Scholar
Visbal, E., Bryan, G., & Haiman, Z., 2015, MNRAS, 453, 4456Google Scholar
Sobral, D. et al. 2015, ApJ, 808, 139Google Scholar
Matthee, J., Sobral, D., Boone, F. et al. 2017 arXiv:1709.06569Google Scholar
Salcido, J. et al. 2016 MNRAS, 463, 870Google Scholar