Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T09:58:45.602Z Has data issue: false hasContentIssue false

Formation of the Earth-Moon system

Published online by Cambridge University Press:  13 January 2020

Sergei I. Ipatov*
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS, 119991, 19 Kosygin st., Moscow, Russia, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Trans-Neptunian satellite systems and embryos of the Earth-Moon system could be formed as a result of contraction of rarefied condensations. The angular momenta of rarefied condensations needed for such formation could be acquired at collisions of condensations. The angular momentum of the present Earth-Moon system could be acquired at a collision of two rarefied condensations with a total mass not smaller than 0.1ME, where ME is the mass of the Earth. The mass of the condensation that was a parent for the embryos of the Earth and the Moon could be about 0.01ME, if we take into account the growth of the angular momentum of the embryos with growth of their masses. The Moon embryo could get by an order of magnitude more material ejected from the Earth embryo than that fell directly onto the Moon embryo.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Canup, R. M., Barr, A. C., & Crawford, D. A. 2013, Icarus, 222, 200 CrossRefGoogle Scholar
Galimov, E. M., & Krivtsov, A. M. 2012, Origin of the Moon. New concept (Berlin: De Gruyter), 168 p CrossRefGoogle Scholar
Ipatov, S. I. 2010, MNRAS, 403, 405 CrossRefGoogle Scholar
Ipatov, S. I. 2014, in Haghighipour, N. (ed.), Formation, detection, and characterization of extrasolar habitable planets, Proc. of the IAU, vol. 8., Symp. S293 (Cambridge: Cambridge Univ. Press), p. 285, http://arxiv.org/abs/1412.8445Google Scholar
Ipatov, S. I. 2015, SPACEKAZAN-IAPS-2015 (Kazan: Kazan University), p. 97, http://arxiv.org/abs/1607.07037Google Scholar
Ipatov, S. I. 2017a, Solar System Research, 51, 294, https://arxiv.org/abs/1801.05217CrossRefGoogle Scholar
Ipatov, S. I. 2017b, Solar System Research, 51, 409, https://arxiv.org/abs/1801.05254CrossRefGoogle Scholar
Ipatov, S. I. 2018a, Solar System Research, 52, 401 CrossRefGoogle Scholar
Ipatov, S. I. 2018b, The Ninth Moscow Solar System Symposium 9M-S3 (Space Research Institute, Moscow, Russia, October 8-12, 2018), 9MS3-SB-11, p. 104, https://ms2018.cosmos.ru/Google Scholar
Ipatov, S. I. & Mather, J. C. 2006, Advances in Space Research 37, 126, http://arxiv.org/format/astro-ph/0411004CrossRefGoogle Scholar
Ipatov, S. I. & Mather, J. C. 2007, in: Valsecchi, G. B., Vokrouhlicky, D., & Milani, A. (eds.), Near-Earth Objects, Our Celestial Neighbors: Opportunity and Risk, Proc. IAU Symp. No. 236 (Cambridge: Cambridge Univ. Press), p. 55, http://arXiv.org/format/astro-ph/0609721Google Scholar
Lyra, W., Johansen, A., Klahr, H., & Piskunov, N. 2008, A&A, 491, L41 Google Scholar
Marov, M. Ya. & Ipatov, S. I. 2018, Solar System Research, 52, 392 CrossRefGoogle Scholar
Nesvorny, D., Youdin, A. N., & Richardson, D. C. 2010, AJ, 140, 785 CrossRefGoogle Scholar
Rufu, R. & Aharonson, O. 2017, Nature Geoscience, 10, 89 CrossRefGoogle Scholar
Surville, C., Mayer, L., & Lin, D. N. 2016, ApJ, 831, A82 CrossRefGoogle Scholar