Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T12:09:49.305Z Has data issue: false hasContentIssue false

The formation of relativistic cosmic jets

Published online by Cambridge University Press:  24 February 2011

David L. Meier*
Affiliation:
MS 169-506, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review current ideas on the launching, acceleration, collimation and propagation of relativistic jets and the influence of strong magnetic fields in the process. Recently, several important elements of the entire jet “engine” structure have been shown to play key roles in the production of an astrophysical jet. Depending on the type of system, these include the spin of the central black hole, the thermal and/or magnetic state of the accretion flow, the presence of a re-collimation point in the jet outflow far away from the central object, and the behavior of MHD shocks and kink instabilities in the final jet. While these physical processes probably are at work in all types of relativistic jets (and many even in more benign stellar outflows), I shall concentrate on ones produced by lower luminosity black hole sources, both in active galactic nuclei and in X-ray binaries. I also will discuss the connection between the theoretical concepts and the large body of observational data now available on these systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Blandford, R. D. & Payne, D. G. 1982, MNRAS, 199, 883 (BP)CrossRefGoogle Scholar
Blandford, R. D. & Znajek, R. L. 1977, MNRAS, 179, 433 (BZ)CrossRefGoogle Scholar
Bogovalov, S. V. 1994, MNRAS, 270, 721CrossRefGoogle Scholar
Brenneman, R. D. & Reynolds, R. L. 2006, ApJ, 652, 1028CrossRefGoogle Scholar
Cheung, C. C. et al. 2007, ApJ, 663, L65CrossRefGoogle Scholar
Clarke, D. A. et al. 1986, ApJ, 311, L63CrossRefGoogle Scholar
Elvis, M. et al. 2002, ApJ, 565, L75CrossRefGoogle Scholar
Fabian, A. C. et al. 2009, Nature, 459, 540CrossRefGoogle Scholar
Fender, R. P. 2001, in Black Holes in Binaries and Galactic Nuclei (Heidelberg: Springer-Verlag), ed. Kaper, L., van den Huevel, E. P. J., & Woudt, P. A., p. 193Google Scholar
Fender, R. P. et al. 2004, MNRAS, 355, 1105CrossRefGoogle Scholar
Fender, R. P. et al. 2010, MNRAS, 406 1425Google Scholar
Fragile, P. C. & Meier, D. L. 2009, ApJ, 693, 771CrossRefGoogle Scholar
Garofalo, D. 2009, ApJ, 699, 400CrossRefGoogle Scholar
Garofalo, D. et al. 2010, MNRAS, 406, 975Google Scholar
Hawley, J. F. & Krolik, J. H. 2006, ApJ, 61, 103CrossRefGoogle Scholar
Iwasawa, D. et al. 1996, MNRAS, 282, 1038CrossRefGoogle Scholar
Kataoka, J. et al. 2007, PASJ, 59, 279CrossRefGoogle Scholar
Komissarov, S. S. 1999, MNRAS, 308, 1069CrossRefGoogle Scholar
Li, Z.-Y. et al. 1992, ApJ, 394, 459CrossRefGoogle Scholar
Lind, K. R. et al. 1989, ApJ, 344, 89CrossRefGoogle Scholar
Lynden-Bell, D. 1996, MNRAS, 279, 389CrossRefGoogle Scholar
Markoff, J. C. & Nowak, C. F. 2004, ApJ, 609, 976CrossRefGoogle Scholar
McClintock, J. E. & Remillard, R. A. 2006, in Compact stellar X-ray sources (Cambridge: Cambridge Univ. Press), ed. Lewin, W. & van der Klis, M., p. 157Google Scholar
McKinney, J. C. 2006, MNRAS, 368, 1561CrossRefGoogle Scholar
McKinney, J. C. & Gammie, C. F. 2004, ApJ, 611, 977CrossRefGoogle Scholar
Meier, D. L. et al. 1997, Nature, 388, 350CrossRefGoogle Scholar
Meier, D. L. 1999, ApJ, 522, 753CrossRefGoogle Scholar
Meier, D. L. 2005, Ap & SS, 300, 55CrossRefGoogle Scholar
Meier, D. L. & Garofalo, D. 2010, in preparation.Google Scholar
Michel, F. C. 1969, ApJ, 158, 727CrossRefGoogle Scholar
Migliari, S. & Fender, R. P. 2006, MNRAS, 366, 79CrossRefGoogle Scholar
Nakamura, M. & Meier, D. L. 2004, ApJ, 617, 123CrossRefGoogle Scholar
Nakamura, M. et al. 2010, ApJ, 721, 1783CrossRefGoogle Scholar
Polko, P. et al. 2010, ApJ, 723, 1343CrossRefGoogle Scholar
Pringle, J. E. 1976, MNRAS, 177, 65CrossRefGoogle Scholar
Punsly, B. & Coroniti, F. V. 1990, ApJ, 354, 583CrossRefGoogle Scholar
Romanova, M. M. et al. 1998, ApJ, 500, 703CrossRefGoogle Scholar
Sambruna, R. M. et al. 2009, ApJ, 700, 1473CrossRefGoogle Scholar
Shakura, N. I. & Sunyaev, R. A. 1976, MNRAS, 175, 613CrossRefGoogle Scholar
Sikora, M. et al. 2007, ApJ, 658, 815CrossRefGoogle Scholar
Szuszkiewicz, E. & Miller, J. C. 2001, MNRAS, 328, 36CrossRefGoogle Scholar
Uzdensky, D. A. 2005, ApJ, 620, 889CrossRefGoogle Scholar
Uzdensky, D. A. & MacFadyen, A. I. 2006, ApJ, 647, 1192CrossRefGoogle Scholar
Vlahakis, N. et al. 2000, MNRAS, 318, 417CrossRefGoogle Scholar
Vlahakis, N. & Konigl, A. 2003, ApJ, 596, 1080CrossRefGoogle Scholar
Wilson, A. S. & Colbet, E. J. M. 1995, ApJ, 438, 62CrossRefGoogle Scholar
Yu, Y. & Tremaine, S. 2002, MNRAS, 335, 965CrossRefGoogle Scholar