Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T11:33:00.375Z Has data issue: false hasContentIssue false

Formation of nuclear rings of barred galaxies and star formation therein

Published online by Cambridge University Press:  22 May 2014

Woong-Tae Kim
Affiliation:
Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics & Astronomy, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea email: [email protected], [email protected], [email protected]
Woo-Young Seo
Affiliation:
Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics & Astronomy, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea email: [email protected], [email protected], [email protected]
Yonghwi Kim
Affiliation:
Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics & Astronomy, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Barred galaxies contain substructures such as a pair of dust lanes and nuclear rings, with the latter being sites of intense star formation. We study the substructure formation as well as star formation in nuclear rings using numerical simulations. We find that nuclear rings form not by the Lindblad resonances, as previously thought, but by the centrifugal barrier that inflowing gas along dust lanes cannot overcome. This predicts a smaller ring in a more strongly barred galaxy, consistent with observations. Star formation rate (SFR) in a nuclear ring is determined primarily by the mass inflow rate to the ring. In our models, the SFR typically shows a short strong burst associated with the rapid gas infall and stays very small for the rest of the evolution. When the SFR is low, ages of young star clusters exhibit an azimuthal gradient along the ring since star formation takes place mostly near the contact points between the dust lanes and the nuclear ring. When the SFR is large, on the other hand, star formation is widely distributed throughout the whole length of the ring, with no apparent age gradient of star clusters. Since observed ring star formation appears long-lived with episodic bursts, our results suggest that the bar region should be replenished continually with fresh gas from outside.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Athanassoula, E. 1992, MNRAS 259, 345Google Scholar
Böker, T., Falcón-Barroso, J., Schinnerer, E., et al. 2008, AJ 135, 479Google Scholar
Buta, R. & Combes, F. 1996, Fund. Cosmic Phys. 17, 95Google Scholar
Combes, F. & Gerin, M. 1985, A&A 150, 327Google Scholar
Combes, F. & Sanders, R. H. 1981, A&A 96, 164Google Scholar
Comerón, S., Martínez-Valpuesta, I., Knapen, J. H., & Beckman, J. E. 2009, ApJ 706, L256Google Scholar
Comerón, S., Knapen, J. H., Beckman, J. E., et al. 2010, MNRAS 402, 2462CrossRefGoogle Scholar
Dekel, A., Sari, R., & Ceverino, D. 2009, ApJ 703, 785Google Scholar
Fraternali, F. & Binney, J. 2006, MNRAS 366, 449Google Scholar
Fraternali, F. & Binney, J. 2008, MNRAS 386, 935Google Scholar
Hsieh, P.-Y., Matsushita, S., Liu, G., Ho, P. T. P., Oi, N., & Wu, Y.-L. 2011, ApJ 736, 129Google Scholar
Kim, C.-G., Kim, W.-T., & Ostriker, E. C. 2011, ApJ 743, 25Google Scholar
Kim, W.-T. & Stone, J. M. 2012, ApJ 751, 124Google Scholar
Kim, W.-T., Seo, W.-Y., & Kim, Y. 2012a, ApJ 758, 14Google Scholar
Kim, W.-T., Seo, W.-Y., Stone, J. M., Yoon, D., & Teuben, P. J. 2012b, ApJ 747, 60Google Scholar
Knapen, J. H., Pérez-Ramìrez, D., & Laine, S. 2002, MNRAS 337, 808Google Scholar
Laurikainen, E. & Salo, H. 2002, MNRAS 337, 1118Google Scholar
Lee, E. & Goodman, J. 1999, MNRAS 308, 984Google Scholar
Lee, G.-H., Park, C., Lee, M. G., & Choi, Y.-Y. 2012, ApJ 747, 125Google Scholar
Martini, P., Regan, M. R., Mulchaey, J. S., & Pogge, R. W. 2003, ApJ 589, 774Google Scholar
Masters, K. L., Nichol, R. C., Hoyle, B., et al. 2011, MNRAS 411, 2026Google Scholar
Mazzuca, L. M., Knapen, J. H., Veilleux, S., & Regan, M. W. 2008, ApJ 174, 337Google Scholar
Mazzuca, L. M., Swaters, R. A., Knapen, J. H., & Veilleux, S. 2011, ApJ 739, 104Google Scholar
Peeples, M. S. & Martini, P. 2006, ApJ 652, 1097Google Scholar
Pfenniger, D. 1984, A&A 134, 373Google Scholar
Piner, B. G., Stone, J. M., & Teuben, P. J. 1995, ApJ 449, 508Google Scholar
Piñol-Ferrer, N., Fathi, K., Carignan, C., et al. 2014, MNRAS 438, 971Google Scholar
Prieto, M. A., Maciejewski, W., & Reunanen, J. 2005, AJ 130, 1472Google Scholar
Richter, P. 2012, ApJ 750, 165Google Scholar
Sanders, R. H. & Huntley, J. M. 1976, ApJ 209, 53Google Scholar
Seo, W.-Y. & Kim, W.-T. 2013, ApJ 769, 100Google Scholar
Sheth, K., Elmegreen, D. M., Elmegreen, B. G., et al. 2008, ApJ 675, 1141Google Scholar
Shlosman, I., Begelman, M. C., & Frank, J. 1990, Nature 345, 679Google Scholar
Shull, J. M. 1980, ApJ 237, 769Google Scholar
van der Laan, T. P. R., Schinnerer, E., Emsellem, E., et al. 2013, A&A 551, A81Google Scholar
van de Ven, G. & Fathi, K. 2010, ApJ 723, 767Google Scholar