Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T13:05:31.407Z Has data issue: false hasContentIssue false

The formation of brown dwarfs in discs: Physics, numerics, and observations

Published online by Cambridge University Press:  27 April 2011

Dimitris Stamatellos
Affiliation:
School of Physics & Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, UK
Anthony Whitworth
Affiliation:
School of Physics & Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A large fraction of brown dwarfs and low-mass stars may form by gravitational fragmentation of relatively massive (a few 0.1 M) and extended (a few hundred AU) discs around Sun-like stars. We present an ensemble of radiative hydrodynamic simulations that examine the conditions for disc fragmentation. We demonstrate that this model can explain the low-mass IMF, the brown dwarf desert, and the binary properties of low-mass stars and brown dwarfs. Observing discs that are undergoing fragmentation is possible but very improbable, as the process of disc fragmentation is short lived (discs fragment within a few thousand years).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2009, ApJ, 700, 1502CrossRefGoogle Scholar
Attwood, R. E., Goodwin, S. P., Stamatellos, D., & Whitworth, A. P. 2009, A&A, 495, 201Google Scholar
Burgasser, A. J., Kirkpatrick, J. D., & Lowrance, P. J. 2005, AJ, 129, 2849CrossRefGoogle Scholar
Burgasser, A. J., Reid, I. N., Siegler, N., Close, L., Allen, P., Lowrance, P., & Gizis, J. 2007, Protostars and Planets V, 427Google Scholar
Faherty, J. K., Burgasser, A. J., West, A. A., Bochanski, J. J., Cruz, K. L., Shara, M. M., & Walter, F. M. 2009, arXiv:0911.1363Google Scholar
Gammie, C. F. 2001, ApJ, 553, 174CrossRefGoogle Scholar
Gizis, J. E., Reid, I. N., Knapp, G. R., Liebert, J., Kirkpatrick, J. D., Koerner, D. W., & Burgasser, A. J. 2003, AJ, 125, 3302CrossRefGoogle Scholar
Hennebelle, P. & Chabrier, G. 2008, ApJ, 684, 395CrossRefGoogle Scholar
Kraus, A. L., White, R. J., & Hillenbrand, L. A. 2006, ApJ, 649, 306CrossRefGoogle Scholar
Lodieu, N., Zapatero Osorio, M. R., Rebolo, R., Martín, E. L., & Hambly, N. C. 2009, A&A, 505, 1115Google Scholar
Lucas, P. W. & Roche, P. F. 2000, MNRAS, 314, 858CrossRefGoogle Scholar
Maury, A. J., et al. 2010, A&A, 512, A40Google Scholar
Moraux, E., Bouvier, J., Stauffer, J. R., & Cuillandre, J.-C. 2003, A&A, 400, 891Google Scholar
Padoan, P. & Nordlund, Å. 2004, ApJ, 617, 559CrossRefGoogle Scholar
Reipurth, B. & Clarke, C. 2001, AJ, 122, 432CrossRefGoogle Scholar
Rice, W. K. M., Lodato, G., & Armitage, P. J. 2005, MNRAS, 364, L56CrossRefGoogle Scholar
Stamatellos, D., Whitworth, A. P., Bisbas, T., & Goodwin, S. 2007a, A&A, 475, 37Google Scholar
Stamatellos, D., Hubber, D. A., & Whitworth, A. P. 2007b, MNRAS, 382, L30CrossRefGoogle Scholar
Stamatellos, D. & Whitworth, A. P. 2008, A&A, 480, 879Google Scholar
Stamatellos, D. & Whitworth, A. P. 2009a, MNRAS, 392, 413CrossRefGoogle Scholar
Stamatellos, D. & Whitworth, A. P. 2009b, MNRAS, 1548Google Scholar
Toomre, A. 1964, ApJ, 139, 1217CrossRefGoogle Scholar
Whitworth, A. P. & Stamatellos, D. 2006, A&A, 458, 817Google Scholar
Whitworth, A., Bate, M. R., Nordlund, Å., Reipurth, B. & Zinnecker, H. 2007, Protostars and Planets V, 459Google Scholar
Zapatero Osorio, M. R., Béjar, V. J. S., Martín, E. L., Rebolo, R., Navascués, D. B., Bailer-Jones, C. A. L., & Mundt, R. 2000, Science, 290, 103CrossRefGoogle Scholar