Hostname: page-component-5f745c7db-sbzbt Total loading time: 0 Render date: 2025-01-06T11:25:22.983Z Has data issue: true hasContentIssue false

Formation of amino acid precursors with large molecular weight in dense clouds and their relevance to origins of bio-homochirality

Published online by Cambridge University Press:  01 February 2008

Kensei Kobayashi
Affiliation:
Graduate School of Engineering, Yokohama National University79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan email: [email protected], [email protected]
Takeo Kaneko
Affiliation:
Graduate School of Engineering, Yokohama National University79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan email: [email protected], [email protected]
Yoshinori Takano
Affiliation:
IFREE, Japan Agency for Marine-Earth Science and Technology2-15 Natsushimacho, Yokosuka 237-0061, Japan email: [email protected]
Jun-ichi Takahashi
Affiliation:
NTT Microsystem Integration Laboratories3-1 Morinosato-Wakamiya, Atsugi 243-0198. Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A wide variety of organic compounds have been found in carbonaceous chondrites and comets, which suggests that extraterrestrial organic compounds could have been an important source of the first terrestrial biosphere. In the Greenberg model, these organic compounds in the small bodies were originally formed in interstellar dusts (ISD) in dense clouds by the action of cosmic rays and ultraviolet light. We irradiated a frozen mixture of methanol, ammonia and water with high-energy heavy ions from an accelerator (“HIMAC” in NIRS, Japan) to simulate the action of cosmic rays in dense clouds. Racemic mixtures of amino acids were detected after hydrolysis of the irradiation products. A mixture of carbon monoxide, ammonia and water also gave such complex amino acid precursors with large molecular weights. When such amino acid precursors were irradiated with circular polarized UV light from a synchrotron, enantiomeric excesses were detected. The yield of amino acids was not largely changed between, before, and after CPL-irradiation. The present results suggest that the seed of homochirality of terrestrial amino acids were originally formed in interstellar space.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bailey, J. A., Chrysostomou, A., Hough, J. H., Gledhill, T. M., McCall, A., Clark, S., Menard, F., & Tamura, M. 1998, Science, 281, 672CrossRefGoogle Scholar
Bernstein, M. P., Dworkin, J. P., Sandford, S. A., Cooper, G. W., & Allamandora, L. J. 2002, Nature, 416, 401CrossRefGoogle Scholar
Bonner, W. A. 1991, Origins Life Evol. Biosphere, 21, 59CrossRefGoogle Scholar
Burkov, V. I., Goncharova, L. A., Gusev, G. A., Kobayashi, K., Moiseenko, E. V., Poluhina, N. G., Saito, T., Tsarev, V. A., Xu, J., & Zhang, G. 2008, Origins Life Evol. Biosph., 38, 155.CrossRefGoogle Scholar
Chyba, C. F. & Sagan, C. 1992, Nature, 355, 125CrossRefGoogle Scholar
Cronin, C. R. & Pizzarello, S. 1997, Science, 275, 951CrossRefGoogle Scholar
Greenberg, J. M. & Li, A. 1997, Adv. Space Res., 19, 981CrossRefGoogle Scholar
Greenberg, J. M. & Mendoza-Gomez, C. X. 1993, in: Greenberg, J. M., Mendoza-Gomez, C. X. & Pirronerllo, V. (eds.), The Chemistry of Life's Origin, (Dordrecht, Kluwer Academic) p. 1CrossRefGoogle Scholar
Gusev, G. A., Saito, T., Tsarev, V. A., & Uryson, A. V. 2007, Origins Life Evol. Biosph., 37, 259.CrossRefGoogle Scholar
Harada, K. & Fox, S. W. 1964, Nature, 201, 335CrossRefGoogle Scholar
Kasting, J. M. 1990, Origins of Life, 20, 199Google Scholar
Kissel, J. & Krueger, F. R. 1987, Nature, 326, 755CrossRefGoogle Scholar
Kobayashi, K., Kaneko, T., Saito, T., & Oshima, T. 1998, Origins Life Evol. Biosphere, 28, 155CrossRefGoogle Scholar
Kobayashi, K., Kasamatsu, T., Kaneko, T., Koike, J., Oshima, T., & Saito, T. 1995, Adv. Space Res., 16, 21CrossRefGoogle Scholar
Kobayashi, K., Ogawa, T., Tonishi, H., Kaneko, T., Takano, Y., Takahashi, J., Saito, T., Muramatsu, Y., Yoshida, S., & Utsumi, Y. 2007, IEEJ Trans. EIS, 127, 293CrossRefGoogle Scholar
Kobayashi, K., Takano, Y., Masuda, H., Tonishi, H., Kaneko, T., Hashimoto, H., & Saito, T. 2004a, Adv. Space Res., 33, 1277CrossRefGoogle Scholar
Kobayashi, K., Tonishi, H., Tsuboi, T., Suzuki, N., Kaneko, T., Takano, Y., Hashimoto, H., & Yamashita, M. 2004b, Biol. Sci. Space, 18, 179.CrossRefGoogle ScholarPubMed
Kvenvolden, K. A., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C, Kaplan, I. R., & Moore, C. 1970, Nature, 228, 923CrossRefGoogle Scholar
Miller, S. L. 1953, Science, 117, 528CrossRefGoogle Scholar
Miyakawa, S., Yamanashi, H., Kobayashi, K., Cleaves, H. J., & Miller, S. L. 2002, Proc. Nat. Acad. Sci. USA, 99, 14628CrossRefGoogle Scholar
Muñoz Caro, G. M., Meierhenrich, U. J., Schutte, W. A., Barbier, B., Segavia, A., Rosenbauer, H., Thiemann, W. H.-P., Brack, A., & Greenberg, J. M. 2002, Nature, 416, 403CrossRefGoogle Scholar
Nakamura-Messenger, K., Messenger, S., Keller, L. P., Clemett, S. J., & Zolensky, M. E. 2006, Science, 314, 1439CrossRefGoogle Scholar
Nishino, H., Kosaka, A., Hembury, G. A., Shitomi, H., Onuki, H &, Inoue, Y. 2001, Org. Lett., 3, 921CrossRefGoogle Scholar
Sagan, C. & Khare, B. N. 1971, Science, 173, 417CrossRefGoogle Scholar
Sandford, S. A., et al. 2006, Science, 314, 1720.CrossRefGoogle Scholar
Soai, K., Shibata, T., Morioka, H. & Choji, K. 1995, Nature, 378, 767CrossRefGoogle Scholar
Takahashi, J., Hosokawa, T., Masuda, H.Kaneko, T., Kobayashi, K., Saito, T., & Utsumi, Y. 1999, Appl. Phys. Lett., 74, 877CrossRefGoogle Scholar
Takano, Y., Takahashi, J., Kaneko, T., Marumo, K., & Kobayashi, K. 2007, Earth Planet. Sci. Lett., 254, 106CrossRefGoogle Scholar
Takano, Y., Tsuboi, T., Kaneko, T., Kobayashi, K., & Marumo, K. 2004, Bull. Chem. Soc. Jpn., 77, 779CrossRefGoogle Scholar