Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T21:21:23.571Z Has data issue: false hasContentIssue false

Formation and evolution of disk galaxies

Published online by Cambridge University Press:  01 June 2008

Joseph Silk*
Affiliation:
Dept. of Physics, Oxford Univ., Denys Wilkinson Bldg., 1 Keble Rd., Oxford OX1 3RHUK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Global star formation is the key to understanding galaxy disk formation. This in turn depends on gravitational instability of disks and continuing gas accretion as well as minor merging. A key component is feedback from supernovae. Primary observational constraints on disk galaxy formation and evolution include the Schmidt-Kennicutt law, the Tully-Fisher relation and the galaxy luminosity function. I will review how theory confronts phenomenology, and discuss future prospects for refining our understanding of disk formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Allard, E. et al. 2006, MNRAS, 371, 1087CrossRefGoogle Scholar
Baldwin, J. et al. 2003, ApJ, 582, 590CrossRefGoogle Scholar
Barnes, J. 2004, MNRAS, 350, 798CrossRefGoogle Scholar
Benson, A. J., Frenk, C. S., Lacey, C. G., Baugh, C. M., Cole, S. 2002, MNRAS, 333, 177CrossRefGoogle Scholar
Blitz, L. & Rosolowsky, E. 2006, ApJ, 650, 933CrossRefGoogle Scholar
Boomsma, R. et al. 2008, A&A in press, preprint arXiv:0807.3339Google Scholar
Bouché, N. et al. 2007, ApJ, 671, 303CrossRefGoogle Scholar
Bower, R. et al. 2006, MNRAS, 370, 645CrossRefGoogle Scholar
Buitrago, F et al. 2008, preprint arXiv:0807.4141Google Scholar
Cen, R. & Ostriker, J. P. 1999, ApJ, 519, L109CrossRefGoogle Scholar
Cioffi, D., McKee, C., & Bertschinger, E. 1988, ApJ, 334, 252CrossRefGoogle Scholar
Croton, D. et al. 2006, MNRAS, 365, 11CrossRefGoogle Scholar
Davé, R. 2008, MNRAS, 385, 147CrossRefGoogle Scholar
Dekel, A. & Silk, J. 1986, ApJ, 303, 39CrossRefGoogle Scholar
De Lucia, G. & Blaizot, J. 2007, MNRAS, 375, 2CrossRefGoogle Scholar
Dutton, A., van den Bosch, F., & Courteau, S. 2008, preprint arXiv0801.1505Google Scholar
Fardal, M. et al. 2007, MNRAS, 379, 985CrossRefGoogle Scholar
Figer, D., 2008, preprint arXiv0803.1619Google Scholar
Gao, Y. & Solomon, P. 2004 ApJ, 606, 258CrossRefGoogle Scholar
Gilmore, G. & Wyse, R. 2004, arXiv:astro-ph/0411714, proceedings of the ESO/Arcetri-workshop on ”Chemical Abundances and Mixing in Stars”, Sep. 2004, Castiglione della Pescaia, Italy, Pasquini, L., Randich, S. (eds.)Google Scholar
Gonzalez, A., Zaritsky, D., & Zabludoff, A. 2007, ApJ, 666, 147N UCrossRefGoogle Scholar
Governato, F. et al. 2007, MNRAS, 374, 1479CrossRefGoogle Scholar
Grossi, M. et al. 2008, preprint arXiv0806.0412CrossRefGoogle Scholar
Kassin, S, 2007, ApJ, 660, L35CrossRefGoogle Scholar
Kennicutt, R. et al. 2007, ApJ, 671, 333CrossRefGoogle Scholar
Kim, S. et al. 2006, ApJ, 653, L113CrossRefGoogle Scholar
Komugi, S. et al. 2005 PASJ, 57, 733CrossRefGoogle Scholar
Koposov, S. et al. 2007 2007arXiv0706.2687Google Scholar
Krumholz. M. & Tan, J. 2007, ApJ, 654, 304Google Scholar
Krumholz, M. & Thompson, T. 2006, ApJ, 669, 289CrossRefGoogle Scholar
Lacey, C. et al. 2008, MNRAS, 385, 1155CrossRefGoogle Scholar
Mac Low, M.-M. & Ferrara, A. 1999, ApJ, 513, 142CrossRefGoogle Scholar
Martin, C., Kobulnicky, H., & Heckman, T. 2002, ApJ, 574, 663CrossRefGoogle Scholar
Matthias, D. & Hamann, F. 2008, RevMexAA (Serie de Conferencias), 32, 65Google Scholar
Oppenheimer, B. D. & Dave, R. 2006, MNRAS, 373, 1265CrossRefGoogle Scholar
Nagashima, M. et al. 2005, MNRAS, 358, 1247CrossRefGoogle Scholar
Penarrubia, J., Navarro, J., & McConnachie, A. 2008, ApJ, 673, 226CrossRefGoogle Scholar
Pettini, M. 1999, in proc. ESO Workshop: Chemical Evolution from Zero to High Redshift, eds. Walsh, J., & Rosa, M., astro-ph/9902173Google Scholar
Robertson, B. & Kravtsov, A. 2008, ApJ, 680, 1083CrossRefGoogle Scholar
Rocha-Pinto, H. et al. 2000, A&A, 358, 869Google Scholar
Sajina, A. et al. 2006, MNRAS, 369, 939CrossRefGoogle Scholar
Schaye, J. 2004, ApJ, 609, 667CrossRefGoogle Scholar
Silk, J. 2001, MNRAS, 323, 313CrossRefGoogle Scholar
Silk, J. & Norman, C. 2008, ApJ, submittedGoogle Scholar
Slyz, A. et al. 2006, MNRAS, 356, 737CrossRefGoogle Scholar
Smith, A. et al. 2008, preprint arXiv0806.0343CrossRefGoogle Scholar
Somerville, R. S. 2002, ApJ, 572, L23CrossRefGoogle Scholar
Somerville, R. S. et al. 2008, ApJ, 672, 776CrossRefGoogle Scholar
Springel, V. & Hernquist, L. 2003, MNRAS, 339, 312CrossRefGoogle Scholar
Steinmetz, M. & Navarro, J. 1999, ApJ, 513, 555CrossRefGoogle Scholar
Stolte, AQ. 2005ApJ. . .628L.113Google Scholar
van Dokkum, P. 2008, ApJ, 674, 29CrossRefGoogle Scholar
Wada, K. & Norman, C. 2007, ApJ, 660, 276CrossRefGoogle Scholar
Wilkins, S., Trentham, N., & Hopkins, A. 2008, MNRAS, 385, 687CrossRefGoogle Scholar