Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T04:02:35.987Z Has data issue: false hasContentIssue false

Formation and Evolution of Black Holes in Galactic Nuclei and Star Clusters

Published online by Cambridge University Press:  01 September 2007

R. Spurzem
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie Univ. Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany
P. Berczik
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie Univ. Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany
I. Berentzen
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie Univ. Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany
D. Merritt
Affiliation:
Dept. of Physics, 85 Lomb Memorial Drive, Rochester Institute of Technology, Rochester, NY14623-5604, USA
M. Preto
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie Univ. Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany
P. Amaro-Seoane
Affiliation:
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the formation, growth, and co-evolution of single and multiple supermassive black holes (SMBHs) and compact objects like neutron stars, white dwarfs, and stellar mass black holes in galactic nuclei and star clusters, focusing on the role of stellar dynamics. In this paper we focus on one exemplary topic out of a wider range of work done, the study of orbital parameters of binary black holes in galactic nuclei (binding energy, eccentricity, relativistic coalescence) as a function of initial parameters. In some cases the classical evolution of black hole binaries in dense stellar systems drives them to surprisingly high eccentricities, which is very exciting for the emission of gravitational waves and relativistic orbit shrinkage. Such results are interesting to the emerging field of gravitational wave astronomy, in relation to a number of ground and space based instruments designed to measure gravitational waves from astrophysical sources (VIRGO, Geo600, LIGO, LISA). Our models self-consistently cover the entire range from Newtonian dynamics to the relativistic coalescence of SMBH binaries.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aarseth, S. J. 1999, PASP 111, 1333CrossRefGoogle Scholar
Aarseth, S. J. 2003, in: Gravitational N-body simulations, Cambridge University Press, Cambridge, p. 173CrossRefGoogle Scholar
Aarseth, S. J. 2007, MNRAS 378, 285CrossRefGoogle Scholar
Ahmad, A. & Cohen, L. 1973, Journal of Computational Physics 12, 349CrossRefGoogle Scholar
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature 287, 307CrossRefGoogle Scholar
Berczik, P., Merritt, D., & Spurzem, R. 2005, ApJ 633, 680CrossRefGoogle Scholar
Berczik, P., Merritt, D., Spurzem, R., & Bischof, H.-P. 2006, ApJ (Letters) 642, L21CrossRefGoogle Scholar
Damour, T. & Dereulle, N. 1987, Phys. Rev. 87, 81Google Scholar
Einsel, C. & Spurzem, R. 1999, MNRAS 302, 81CrossRefGoogle Scholar
Hemsendorf, M., Sigurdsson, S., & Spurzem, R. 2002, ApJ 581, 1256CrossRefGoogle Scholar
Khalisi, E., Omarov, C. T., Spurzem, R., Giersz, M., & Lin, D. N. C. 2003, in: High Performance Computing in Science and Engineering, Springer Vlg., p. 71Google Scholar
Komossa, S., Burwitz, V., Hasinger, G., Predehl, P., Kaastra, J. S. & Ikebe, Y. 2003, ApJ (Letters) 582, L15CrossRefGoogle Scholar
Kupi, G., Amaro-Seoane, P., & Spurzem, R. 2006, MNRAS 371, 45CrossRefGoogle Scholar
Kustaanheimo, P. & Stiefel, E. 1965, Journal für die reine und angewandte Mathematik 218, 204CrossRefGoogle Scholar
Lee, H. M. 1987, ApJ 319, 801CrossRefGoogle Scholar
Lee, M. H. 1993 AJ 418, 147CrossRefGoogle Scholar
Makino, J., Fukushige, T., Okumura, S. K., & Ebisuzaki, T. 1993, PASJ 45, 303Google Scholar
Makino, J. & Funato, Y. 2004, ApJ 602, 93CrossRefGoogle Scholar
Mikkola, S. & Merritt, D. 2007, arXiv:0709.3367Google Scholar
Merritt, D., Mikkola, S., & Szell, A. 2007, arXiv:0705.2745Google Scholar
Milosavljević, M. & Merritt, D. 2001, ApJ 563, 34CrossRefGoogle Scholar
Milosavljević, M. & Merritt, D. 2003, ApJ 596, 860CrossRefGoogle Scholar
Peters, P. C. 1964, Phys. Rev. 136, 1224CrossRefGoogle Scholar
Peters, P. C. & Mathews, J. 1963 Phys. Rev. 131, 435CrossRefGoogle Scholar
Quinlan, G. D. 1996, New Astron. 1, 35CrossRefGoogle Scholar
Quinlan, G. D. & Shapiro, S. L. 1989 AJ 343, 725CrossRefGoogle Scholar
Quinlan, G. D. & Shapiro, S. L. 1990, AJ 356, 483CrossRefGoogle Scholar
Sesana, A., Haardt, F., & Madau, P. 2007, AJ 660, 546CrossRefGoogle Scholar
Soffel, M. H. 1989, in: Relativity in Astrometry, Celestial Mechanics and Geodesy, Springer-Verlag Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
Spurzem, R. 1999, Journal of Computational and Applied Mathematics 109, 407CrossRefGoogle Scholar