Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:32:38.413Z Has data issue: false hasContentIssue false

Forecasting the solar activity cycle: new insights

Published online by Cambridge University Press:  18 July 2013

Dibyendu Nandy
Affiliation:
Indian Institute for Science Education and Research, Kolkata, Mohanpur 741252, West Bengal, India
Bidya Binay Karak
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore 560012, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Having advance knowledge of solar activity is important because the Sun's magnetic output governs space weather and impacts technologies reliant on space. However, the irregular nature of the solar cycle makes solar activity predictions a challenging task. This is best achieved through appropriately constrained solar dynamo simulations and as such the first step towards predictions is to understand the underlying physics of the solar dynamo mechanism. In Babcock-Leighton type dynamo models, the poloidal field is generated near the solar surface whereas the toroidal field is generated in the solar interior. Therefore a finite time is necessary for the coupling of the spatially segregated source layers of the dynamo. This time delay introduces a memory in the dynamo mechanism which allows forecasting of future solar activity. Here we discuss how this forecasting ability of the solar cycle is affected by downward turbulent pumping of magnetic flux. With significant turbulent pumping the memory of the dynamo is severely degraded and thus long term prediction of the solar cycle is not possible; only a short term prediction of the next cycle peak may be possible based on observational data assimilation at the previous cycle minimum.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Brandenburg, A. Jennings, R. L., Nordlund, Å., Rieutord, M., Stein, R. F., & Tuominen, I. 1996, Journal Fluid Mech., 306, 325 CrossRefGoogle Scholar
Chatterjee, P., Nandy, D., & Choudhuri, A. R. 2004, A&A, 427, 1019 Google Scholar
Choudhuri, A. R. 2013, these proceedings (arXiv:1211.0520)Google Scholar
Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, Phys. Rev. Lett., 98, 1103 CrossRefGoogle Scholar
Choudhuri, A. R. & Karak, B. B. 2009, RAA, 9, 953 Google Scholar
Choudhuri, A. R. & Karak, B. B. 2012, Phys. Rev. Lett., 109, 171103 Google Scholar
Choudhuri, A. R., Schüssler, M., & Dikpati, M. 1995, A&A, 303, L29 Google Scholar
Dorch, S. B. F. & Nordlund, Å. 2001, A&A 365, 562.Google Scholar
Dikpati, M. de Toma, G., & Gilman, P. A. 2006, Geophys. Res. Lett., 33, L05102 CrossRefGoogle Scholar
Guerrero, G. & de Gouveia Dal Pino, E. M. 2008, ApJ 485, 267 Google Scholar
Jiang, J., Chatterjee, P., & Choudhuri, A. R. 2007, MNRAS, 381, 1527 Google Scholar
Käpylä, P. J., Korpi, M. J., Ossendrijver, M., & Stix, M. 2006, A&A 455, 401 Google Scholar
Karak, B. B. 2010, ApJ, 724, 1021 CrossRefGoogle Scholar
Karak, B. B. & Choudhuri, A. R. 2011, MNRAS, 410, 1503 Google Scholar
Karak, B. B. & Choudhuri, A. R. 2012, Solar Phys., 278, 137 Google Scholar
Karak, B. B. & Nandy, D. 2012, ApJ Lett., 2012, ApJ 761, L13 CrossRefGoogle Scholar
Karak, B. B. & Petrovay, K. 2013, Solar Phys., 282, 321 CrossRefGoogle Scholar
Miesch, M. S., Featherstone, N. A., Rempel, M., & Trampedach, R. 2012, ApJ, 757, 128 Google Scholar
Muñoz-Jaramillo, A, Nandy, D., Martens, P. C. H., & Yeates, A. R. 2010, ApJ 720, L20 Google Scholar
Nandy, D. 2012, IAU Symp. 286, Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars, ed. Mandrini, C. H. & Webb, D. F. (Cambridge: Cambridge Univ. Press), 54 Google Scholar
Nandy, D. & Choudhuri, A. R. 2002, Science, 296, 1671 CrossRefGoogle Scholar
Nandy, D., Muñoz-Jaramillo, A., & Martens, P. C. H. 2011, Nature, 471, 80 CrossRefGoogle Scholar
Ossendrijver, M., Stix, M., Brandenburg, A., & Rüdiger, G. 2002, ApJ 394, 735 Google Scholar
Petrovay, K. & Szakaly, G. 1993, A&A 274, 543 Google Scholar
Pesnell, W. D. 2008, Solar Phys., 252, 209.CrossRefGoogle Scholar
Racine, È., Charbonneau, P., Ghizaru, M., Bouchat, A., & Smolarkiewicz, P. K. 2011, ApJ 735, 46 CrossRefGoogle Scholar
Tobias, S. M. et al. 2001, ApJ 549, 1183 CrossRefGoogle Scholar
Yeates, A. R., Nandy, D., & Mackay, D. H. 2008, ApJ, 673, 544 CrossRefGoogle Scholar