Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T17:36:01.765Z Has data issue: false hasContentIssue false

Flux rope axis geometry of magnetic clouds deduced from in situ data

Published online by Cambridge University Press:  06 January 2014

Miho Janvier
Affiliation:
Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex, France email: [email protected], [email protected]
Pascal Démoulin
Affiliation:
Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex, France email: [email protected], [email protected]
Sergio Dasso
Affiliation:
Departamento de Física e Instituto de Astronomía y Física del Espacio (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic clouds (MCs) consist of flux ropes that are ejected from the low solar corona during eruptive flares. Following their ejection, they propagate in the interplanetary medium where they can be detected by in situ instruments and heliospheric imagers onboard spacecraft. Although in situ measurements give a wide range of data, these only depict the nature of the MC along the unidirectional trajectory crossing of a spacecraft. As such, direct 3D measurements of MC characteristics are impossible. From a statistical analysis of a wide range of MCs detected at 1 AU by the Wind spacecraft, we propose different methods to deduce the most probable magnetic cloud axis shape. These methods include the comparison of synthetic distributions with observed distributions of the axis orientation, as well as the direct integration of observed probability distribution to deduce the global MC axis shape. The overall shape given by those two methods is then compared with 2D heliospheric images of a propagating MC and we find similar geometrical features.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Aulanier, G., Török, T., Démoulin, P., & DeLuca, E. E. 2010, Astrophysical Journal, 708, 314Google Scholar
Dasso, S., Mandrini, C. H., Démoulin, , et al. 2005, Adv. Spa. Res., 35, 711Google Scholar
Dasso, S., Mandrini, C. H., Démoulin, P., & Luoni, M. L. 2006, A&A, 455, 349Google Scholar
Démoulin, P., Mandrini, C. H., van Driel-Gesztelyi, L., et al. 2002, A&A, 382, 650Google Scholar
Démoulin, P. 2014, Solar Physics, this issueGoogle Scholar
Gosling, J. T., Bame, S. J., McComas, D. J., & Phillips, J. L. 1990, Geo. Res. Let., 17, 901Google Scholar
Gosling, J. T. 1993, Physics of Fluids B, 5, 2638Google Scholar
Janvier, M., Démoulin, P., & Dasso, S. 2013, A&A, 556, A50Google Scholar
Kilpua, E. K. J., Jian, L. K., Li, , et al. 2011, Jour. Atmos. Sol.-Ter. Phys., 73, 1228Google Scholar
Larson, D. E., Lin, R. P., McTiernan, J. M.et al. 1997, Geophysical Research Letters, 24, 1911CrossRefGoogle Scholar
Lepping, R. P., Burlaga, L. F., & Jones, J. A. 1990, J. Geophys. Res., 95, 11957Google Scholar
Lepping, R. P. & Wu, C. C. 2010, Ann. Geophys., 28, 1539Google Scholar
Lundquist, S. 1950, Ark. Fys., 2, 361Google Scholar
Marubashi, K. 2000, Adv. Spa. Res., 26, 55Google Scholar
Masson, S., Démoulin, P., Dasso, S., & Klein, K.-L. 2012, A&A, 538, A32Google Scholar
Moore, R. L., Schmieder, B., Hathaway, D. H., & Tarbel, T. D. 1997, Solar Physics, 176, 153Google Scholar
Möstl, C., Farrugia, C. J., Temmer, M., et al. 2009, Astrophysical Journal, 705, L180Google Scholar
Nakwacki, M., Dasso, S., & Démoulin, P. 2011, A&A, 535, A52Google Scholar
Sonnerup, B. U., Hasegawa, H., Teh, W.-L., & Hau, L.-N. 2006, Jour. Geophys. Res., 111, A09204Google Scholar
Title, A. 2014, Solar Physics, this issueGoogle Scholar
Zhang, J., Cheng, X., & Ding, M. 2012, Nature communications, 3, 747Google Scholar