Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T20:23:05.875Z Has data issue: false hasContentIssue false

Flaring Masers and Pumping

Published online by Cambridge University Press:  07 February 2024

M. D. Gray*
Affiliation:
National Astronomical Research Institute of Thailand, 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai 50180, Thailand.
S. Etoka
Affiliation:
Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, M13 9PL, UK.
B. Pimpanuwat
Affiliation:
Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, M13 9PL, UK.
A. M. S. Richards
Affiliation:
Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, M13 9PL, UK.
F. J. Cowie
Affiliation:
Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, M13 9PL, UK.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We briefly consider the history of maser variability, and of flaring variability specifically. We consider six proposed flare generation mechanisms, and model them computationally with codes that include saturation and 3-D structure (the last mechanism is modelled in 1-D). Fits to observational light curves have been made for some sources, and we suggest that a small number of observational parameters can diagnose the flare mechanism in many cases. The strongest flares arise from mechanisms that can increase the number density of inverted molecules in addition to by geometrical effects, and in events where unsaturated quiescent masers become saturated during the flare.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bhardwaj, A., Kanbur, S. M., Marconi, M., Rejkuba, M., et al. 2017, MNRAS, 466, 2805 10.1093/mnras/stw3256CrossRefGoogle Scholar
Burns, R. A., Kobak, A., Garatti o Caratti, A., et al. & Maser Monitoring Organization (M2O) 2022, European VLBI Network Mini-Symposium and Users’ Meeting 2021, 12–14 July, 2021, 19Google Scholar
Cesaroni, R. 1990, A&A, 233, 513 Google Scholar
Clegg, A. W. & Cordes, J. M. 1991, ApJ, 374, 150 10.1086/170105CrossRefGoogle Scholar
Field, D., Gray, M. D., & de St. Paer, P. 1994, A&A, 282, 213Google Scholar
Goedhart, S., Gaylard, M. J., & van der Walt, D. J. 2004, MNRAS, 355, 553 10.1111/j.1365-2966.2004.08340.xCrossRefGoogle Scholar
Goedhart, S., Langa, M. C., Gaylard, M. J., & van der Walt, D. J. 2009, MNRAS, 398, 995 10.1111/j.1365-2966.2009.15176.xCrossRefGoogle Scholar
Goldreich, P. & Kwan, J. 1974, ApJ, 190, 27 10.1086/152843CrossRefGoogle Scholar
Gray, M. D., Baggott, J., Westlake, J., & Etoka, S. 2019, MNRAS, 486, 4216 10.1093/mnras/stz1137CrossRefGoogle Scholar
Gray, M. D., Etoka, S., & Pimpanuwat, B. 2020a, MNRAS, 498, L11 10.1093/mnrasl/slaa117CrossRefGoogle Scholar
Gray, M. D., Etoka, S., Travis, A., & Pimpanuwat, B. 2020b, MNRAS, 493, 2472 10.1093/mnras/staa424CrossRefGoogle Scholar
Inayoshi, K., Sugiyama, K., Hosokawa, T., Motogi, K., & Tanaka, K. E. I. 2013, ApJ, 769, L20 10.1088/2041-8205/769/2/L20CrossRefGoogle Scholar
Kaufman, M. J. & Neufeld, D. A. 1996, ApJ, 456, 250 10.1086/176645CrossRefGoogle Scholar
Kobak, A., Bartkiewicz, A., Szymczak, M., et al. 2023, A&A, 671, A135 Google Scholar
MacLeod, G. C., Smits, D. P., Goedhart, S., Hunter, T. R., et al. 2018, MNRAS, 478, 1077 10.1093/mnras/sty996CrossRefGoogle Scholar
Moscadelli, L., Sanna, A., Goddi, C., Walmsley, M. C., et al. 2017, A&A, 600, L8 Google Scholar
Nugent, C. R., Mainzer, A., Masiero, J., Bauer, J., et al. 2015, ApJ, 814, 117 10.1088/0004-637X/814/2/117CrossRefGoogle Scholar
Olech, M., Szymczak, M., Wolak, P., Gérard, E., & Bartkiewicz, A 2020, A&A, 634, A41 Google Scholar
Parfenov, S. Y. & Sobolev, A. M. 2014, MNRAS, 444, 620 10.1093/mnras/stu1481CrossRefGoogle Scholar
Rajabi, F., Houde, M., Bartkiewicz, A., Olech, M., Szymczak, M., & Wolak, P. 2019, MNRAS, 484, 1590 Google Scholar
Sobolev, A. M. 1993, Astrophysical Masers: Proceedings of the Conference, Arlington, VA, March 9–11, 1992, 219Google Scholar
Stecklum, B., Caratti o Garatti, A., Hodapp, K., Linz, H., Moscadelli, L., & Sanna, A. 2018, Astrophysical Masers: Unlocking the Mysteries of the Universe, volume 336 of IAU Symposium, 3710.1017/S1743921317010511CrossRefGoogle Scholar
Sugiyama, K., Nagase, K., Yonekura, Y., Momose, M., et al. 2017, PASJ, 69, 59 10.1093/pasj/psx034CrossRefGoogle Scholar
Tanabe, Y., Yonekura, Y., & MacLeod, G. C. 2023, PASJ, 75, 351 10.1093/pasj/psad002CrossRefGoogle Scholar
van der Walt, D. J., Goedhart, S., & Gaylard, M. J. 2009, MNRAS, 398, 961 10.1111/j.1365-2966.2009.15147.xCrossRefGoogle Scholar
van der Walt, D. J., Maswanganye, J. P., Etoka, S., Goedhart, S., & van den Heever, S. P. 2016, A&A, 588, A47 Google Scholar
Watson, W. D. & Wyld, H. W. 2000, ApJ, 530, 207 10.1086/308352CrossRefGoogle Scholar