Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T01:39:00.489Z Has data issue: false hasContentIssue false

The First Galaxies

Published online by Cambridge University Press:  01 June 2008

Volker Bromm*
Affiliation:
Department of Astronomy, University of Texas, Austin, TX 78712, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An important open frontier in astrophysics is to understand how the first sources of light, the first stars and galaxies, ended the cosmic dark ages at redshifts z ≃ 15 − 20. Their formation signaled the transition from the simple initial state of the universe to one of ever increasing complexity. We here review recent progress in understanding the assembly process of the first galaxies with numerical simulations, starting with cosmological initial conditions and modelling the detailed physics of star formation. The key drivers in building up the primordial galaxies are the feedback effects from the first stars, due to their input of radiation and of heavy chemical elements in the wake of supernova explosions. In addition, the conditions inside the first galaxies are governed by the gravitationally-driven turbulence generated during the virialization of the dark matter host halo. Our theoretical predictions will be tested with upcoming near-infrared observatories, such as the James Webb Space Telecope, in the decade ahead.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93CrossRefGoogle Scholar
Alvarez, M. A., Bromm, V., & Shapiro, P. R. 2006, ApJ, 639, 621CrossRefGoogle Scholar
Barkana, R. & Loeb, A. 2001, Phys. Rep., 349, 125CrossRefGoogle Scholar
Beers, T. C. & Christlieb, N. 2005, ARA&A, 43, 531Google Scholar
Bromm, V. & Clarke, C. J. 2002, ApJ, 566, L1CrossRefGoogle Scholar
Bromm, V., Coppi, P. S., & Larson, R. B. 2002, ApJ, 564, 23CrossRefGoogle Scholar
Bromm, V. & Larson, R. B. 2004, ARA&A, 42, 79Google Scholar
Bromm, V. & Loeb, A. 2002, ApJ, 575, 111CrossRefGoogle Scholar
Bromm, V. & Loeb, A. 2003, Nature, 425, 812CrossRefGoogle Scholar
Bromm, V. & Loeb, A. 2006, ApJ, 642, 382CrossRefGoogle Scholar
Ciardi, B. & Ferrara, A. 2005, Space Science Reviews, 116, 625CrossRefGoogle Scholar
Clark, P. C., Glover, S. C. O., & Klessen, R. S. 2008, ApJ, 672, 757CrossRefGoogle Scholar
Dijkstra, M., Haiman, Z., Rees, M. J., & Weinberg, D. H. 2004, ApJ, 601, 666CrossRefGoogle Scholar
Dwek, E., Arendt, R. G., & Krennrich, F. 2005, ApJ, 635, 784CrossRefGoogle Scholar
Fernandez, E. R. & Komatsu, E. 2006, ApJ, 646, 703CrossRefGoogle Scholar
Frebel, A., Johnson, J. L., & Bromm, V. 2007, MNRAS, 380, L40CrossRefGoogle Scholar
Greif, T. H. & Bromm, V. 2006, MNRAS, 373, 128CrossRefGoogle Scholar
Greif, T. H., Johnson, J. L., Bromm, V., & Klessen, R. S. 2007, ApJ, 670, 1CrossRefGoogle Scholar
Greif, T. H., Johnson, J. L., Klessen, R. S., & Bromm, V., 2008, MNRAS, 387, 1021CrossRefGoogle Scholar
Johnson, J. L. & Bromm, V. 2006, MNRAS, 366, 247CrossRefGoogle Scholar
Johnson, J. L., Greif, T. H., & Bromm, V. 2007, ApJ, 665, 85CrossRefGoogle Scholar
Johnson, J. L., Greif, T. H., & Bromm, V. 2008, MNRAS, 388, 26CrossRefGoogle Scholar
Karlsson, T., Johnson, J. L., & Bromm, V. 2008, ApJ, 679, 6CrossRefGoogle Scholar
Kashlinsky, A., Arendt, R. G., Mather, J., & Moseley, S. H. 2005, Nature, 438, 45CrossRefGoogle Scholar
Lamb, D. Q. & Reichart, D. E. 2000, ApJ, 536, 1CrossRefGoogle Scholar
Machida, M. N., Tomisaka, K., Nakamura, F., & Fujimoto, M. Y. 2005, ApJ, 622, 39CrossRefGoogle Scholar
Magliocchetti, M., Salvaterra, R., & Ferrara, A. 2003, MNRAS, 342, L25CrossRefGoogle Scholar
McKee, C. F. & Tan, J. C. 2008, ApJ, 681, 771CrossRefGoogle Scholar
Miralda-Escudé, J. 2003, Science, 300, 1904CrossRefGoogle Scholar
Oh, S. P. & Haiman, Z. 2002, ApJ, 569, 558CrossRefGoogle Scholar
Santos, M. R., Bromm, V., & Kamionkowski, M. 2002, MNRAS, 336, 1082CrossRefGoogle Scholar
Shapiro, P. R. & Kang, H. 1987, ApJ, 318, 32CrossRefGoogle Scholar
Shchekinov, Y. A. & Vasiliev, E. O. 2006, MNRAS, 368, 454CrossRefGoogle Scholar
Spergel, D. N. et al. 2007, ApJS, 170, 377CrossRefGoogle Scholar
Whalen, D., van Veelen, B., O'Shea, B. W., & Norman, M. L. 2008, ApJ, 682, 49CrossRefGoogle Scholar
Wise, J. H. & Abel, T. 2007, ApJ, 665, 899CrossRefGoogle Scholar
Yoshida, N., Bromm, V., & Hernquist, L. 2004, ApJ, 605, 579CrossRefGoogle Scholar
Yoshida, N., Oh, S. P., Kitayama, T., & Hernquist, L. 2007a, ApJ, 663, 687CrossRefGoogle Scholar
Yoshida, N., Omukai, K., & Hernquist, L. 2007b, ApJ, 667, L117CrossRefGoogle Scholar
Yoshida, N., Omukai, K., Hernquist, L., & Abel, T. 2006, ApJ, 652, 6CrossRefGoogle Scholar