Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T02:41:27.139Z Has data issue: false hasContentIssue false

The first detections of the key prebiotic molecule PO in star-forming regions

Published online by Cambridge University Press:  04 September 2018

Víctor M. Rivilla
Affiliation:
Osservatorio Astrofisico di Arcetri Largo Enruco Fermi, 50125, Florence, Italy email: [email protected]
Francesco Fontani
Affiliation:
Osservatorio Astrofisico di Arcetri Largo Enruco Fermi, 50125, Florence, Italy email: [email protected]
Maite Beltrán
Affiliation:
Osservatorio Astrofisico di Arcetri Largo Enruco Fermi, 50125, Florence, Italy email: [email protected]
Anton Vasyunin
Affiliation:
Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748, Garching, Germany
Paola Caselli
Affiliation:
Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748, Garching, Germany
Jesús Martín-Pintado
Affiliation:
Centro de Astrobiología (CSIC-INTA) Ctra. de Torrejón a Ajalvir km 4, 28850, Torrejón de Ardoz, Spain
Riccardo Cesaroni
Affiliation:
Osservatorio Astrofisico di Arcetri Largo Enruco Fermi, 50125, Florence, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Phosphorus is a crucial element in prebiotic chemistry, especially the P−O bond, which is key for the formation of the backbone of the deoxyribonucleic acid. So far, PO had only been detected towards the envelope of evolved stars, and never towards star-forming regions. We report the first detection of PO towards two massive star-forming regions, W51 e1/e2 and W3(OH), using data from the IRAM 30m telescope. PN has also been detected towards the two regions. The abundance ratio PO/PN is 1.8 and 3 for W51 and W3(OH), respectively. Our chemical model indicates that the two molecules are chemically related and are formed via gas-phase ion-molecule and neutral-neutral reactions during the cold collapse. The molecules freeze out onto grains at the end of the collapse and desorb during the warm-up phase once the temperature reaches ~35 K. The observed molecular abundances of 10−10 are predicted by the model if a relatively high initial abundance of 5× 10−9 of initial phosphorus is assumed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Adams, N. G., McIntosh, B. J., & Smith, D., 1990, A&A, 232, 443Google Scholar
Agúndez, M., Cernicharo, J., Decin, L., Encrenaz, P., & Teyssier, D., 2014, ApJ, 790, L27Google Scholar
Caffau, E., Bonifacio, P., Faraggiana, R., & Steffen, M., 2011, A&A, 532, A98Google Scholar
Caffau, E., Andrievsky, S., Korotin, S., Origlia, L., Oliva, E., et al. 2016, A&A, 585, A16Google Scholar
Charnley, S. B. & Millar, T. J., 1994, MNRAS, 270, 570Google Scholar
De Beck, E., Kamiński, T., Patel, N. A., Young, K. H., Gottlieb, , et al. 2013, A&A, 558, A132Google Scholar
Fontani, F., Rivilla, V. M., Caselli, P., Vasyunin, A., & Palau, A., 2016, ArXiv e-prints:1604.02565, accepted in ApJ.Google Scholar
Grevesse, N. & Sauval, A. J., 1998, SSRv, 85, 161Google Scholar
Jura, M. & York, D. G., 1978, xsApJ, 219, 861Google Scholar
Kanata, H., Yamamoto, S., & Saito, S., 1988, JMoSp, 131, 89Google Scholar
Kawaguchi, K., Saito, S., & Hirota, E., 1983, J. Chem. Phys.Google Scholar
Koo, B.-C., Lee, Y.-H., Moon, D.-S., Yoon, S.-C., & Raymond, J. C., 2013, Science, 342, 1346Google Scholar
Maciá, E., Hernández, M. V., & Oró, J., 1997, OrLi, 27, 459Google Scholar
Marseille, M. G., van der Tak, F. F. S., Herpin, F., Wyrowski, F., Chavarría, L., et al. 2010, A&A, 521, L32Google Scholar
Matthews, H. E., Feldman, P. A., & Bernath, P. F., 1987, ApJ, 312, 358Google Scholar
Millar, T. J., Bennett, A., & Herbst, E., 1987, MNRAS, 229, 41PGoogle Scholar
Pasek, M. A. & Lauretta, D. S., 2005, AsBio, 5, 515Google Scholar
Rivilla, V. M., Beltrán, M. T., Cesaroni, R., Fontani, F., Codella, C., & Zhang, Q., 2017, Astronomy & Astrophysics, 598, A59Google Scholar
Roederer, I. U., Jacobson, H. R., Thanathibodee, T., Frebel, A., & Toller, E., 2014, ApJ, 797, 69Google Scholar
Sutton, E. C., Blake, G. A., Masson, C. R., & Phillips, T. G., 1985, ApJS, 58, 341Google Scholar
Tenenbaum, E. D., Woolf, N. J., & Ziurys, L. M., 2007, ApJ, 666, L29Google Scholar
Thorne, L. R., Anicich, V. G., Prasad, S. S., & Huntress, W. T. Jr., 1984, ApJ, 280, 139Google Scholar
Turner, B. E. & Bally, J., 1987, ApJ, 321, L75Google Scholar
Vasyunin, A. I. & Herbst, E., 2013, ApJ, 762, 86Google Scholar
Wakelam, V. & Herbst, E., 2008, ApJ, 680, 371Google Scholar
Ziurys, L. M. & Friberg, P., 1987, ApJL, 314, L49Google Scholar