Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T23:16:52.791Z Has data issue: false hasContentIssue false

Feeding and feedback in nearby AGN – comparison with the Milky Way center

Published online by Cambridge University Press:  22 May 2014

T. Storchi-Bergmann*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul Campus do Vale, CP 15051, 91501-970 Porto Alegre RS, Brazil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I discuss feeding and feedback processes observed in the inner few hundred parsecs of nearby active galaxies using integral field spectroscopy at spatial resolutions of a few to tens of parsecs. Signatures of feedback include outflows from the nucleus with velocities ranging from 200 to 1000 km s−1, with mass outflow rates between 0.5 and a few M yr−1. Signatures of feeding include the observation of gas inflows along nuclear spirals and filaments, with velocities ranging from 50 to 100 km s−1 and mass flow rates from 0.1 to ∼1 M yr−1. These rates are 2–3 orders of magnitude larger than the mass accretion rate to the supermassive black hole (SMBH). These inflows can thus lead, during less than one activity cycle, to the accumulation of enough gas in the inner few hundred parsecs, to trigger the formation of new stars, leading to the growth of the galaxy bulge. Young to intermediate age stars have indeed been found in circumnuclear rings around a number of Active Galactic Nuclei (AGN). In particular, one of these rings, with radius of ≈ 100 pc is observed in the Seyfert 2 galaxy NGC 1068, and is associated to an off-centered molecular ring, very similar to that observed in the Milky Way (MW). On the basis of an evolutionary scenario in which gas falling into the nuclear region triggers star formation followed by the triggering of nuclear activity, we speculate that, in the case of the MW, molecular gas has already accumulated within the inner ≈ 100 pc to trigger the formation of new stars, as supported by the presence of blue stars close to the galactic center. A possible increase in the star-formation rate in the nuclear region will then be followed, probably tens of millions of years later, by the triggering of nuclear activity in Sgr A*.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Barbosa, F. K. B.et al. 2006, MNRAS, 371, 170CrossRefGoogle Scholar
Barbosa, F. K. B., et al. 2009, MNRAS, 396, 2CrossRefGoogle Scholar
Barbosa, F. K. B., et al. 2014, MNRAS, submittedGoogle Scholar
Crenshaw, D. M. & Kraemer, S. B. 2007, ApJ, 659, 250CrossRefGoogle Scholar
Croton, D., et al. 2006, MNRAS, 365, 11Google Scholar
Das, V., Crenshaw, D. M., Kraemer, S. B., Deo, R. P., 2006, AJ, 132, 620Google Scholar
Dale, D. A.et al. 2005, ApJ, 129, 2197CrossRefGoogle Scholar
Davies, R. I., et al. 2009, ApJ, 702, 114Google Scholar
Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604Google Scholar
Di Matteo, T., Colberg, J., Springel, V., Hernquist, L., & Sijacki, D. 2008, ApJ, 676, 33CrossRefGoogle Scholar
Emsellem, E.et al. 2006, MNRAS, 365, 367CrossRefGoogle Scholar
Fathi, K., et al. 2006, ApJ, 641, L25CrossRefGoogle Scholar
Fathi, K.et al. 2013, ApJ, 770, L27Google Scholar
Ferrarese, L. & Ford, H. 2005, SSRv, 116, 523Google Scholar
Garcia-Burillo, S.et al. 2005, A&A, 441, 1011Google Scholar
Hopkins, P. F., et al. 2005, ApJ, 630, 705Google Scholar
Hopkins, P. & Quataert, E., 2010, MNRAS, 407, 1529CrossRefGoogle Scholar
Kormendy, J. & Ho, L. 2013, ARA&A, 51, 511Google Scholar
Liu, H. B.et al. 2012, ApJ, 756, 195Google Scholar
Maciejewski, W. 2004, MNRAS, 354, 892Google Scholar
Malkan, M. A.et al. 1998, ApJS, 117, 25Google Scholar
Martini, P. & Pogge, R. W. 1999, AJ, 118, 2646Google Scholar
Martini, P., Regan, M. W., Mulchaey, J. S., & Pogge, R. W. 2003, ApJ, 589, 774Google Scholar
Martini, P., Dicken, D & Storchi-Bergmann, T. 2013, ApJ, 766, 121CrossRefGoogle Scholar
Molinari, S.et al. 2011, ApJ, 735, L33Google Scholar
Peeples, M. S. & Martini, P. 2006, ApJ, 652, 1097CrossRefGoogle Scholar
Piñol-Ferrer, , Lindblad, , Fathi, 2012, MNRAS, 421, 1089Google Scholar
Pogge, R. W. & Martini, P. 2002, ApJ, 569, 624Google Scholar
Riffel, R. A., et al. 2008, MNRAS, 385, 1129CrossRefGoogle Scholar
Riffel, R. A., Storchi-Bergmann, T., Riffel, R., & Pastoriza, M. G., 2010, ApJ, 713, 469CrossRefGoogle Scholar
Riffel, R. & Storchi-Bergmann, T. 2011, MNRAS, 411, 469CrossRefGoogle Scholar
Riffel, R. A. & Storchi-Bergmann, T. 2011, MNRAS, 417, 2752CrossRefGoogle Scholar
Riffel, R., Riffel, Rogemar A., Ferrari, F., & Storchi-Bergmann, T., 2011, MNRAS, 416, 493Google Scholar
Riffel, et al. 2013, MNRAS, 430, 2249Google Scholar
Schmitt, H. R., Storchi-Bergmann, T. & Baldwin, Jack A. 1994, ApJ, 423, 237Google Scholar
Schnorr Müller, et al. 2011, MNRAS, 413, 149Google Scholar
Schnorr Müller, et al. 2013a, MNRAS, in pressGoogle Scholar
Schnorr Müller, et al. 2013a, MNRAS, submittedGoogle Scholar
Simões Lopes, R., Storchi-Bergmann, T., Saraiva, M. F., & Martini, P. 2007, ApJ, 655, 718Google Scholar
Somerville, R.et al. 2008, MNRAS, 391, 481Google Scholar
Springel, V.et al. 2005, MNRAS, 361, 776Google Scholar
Steiner, J. E., Menezes, R. B., Ricci, T. V., & Oliveira, A. S. 2009, MNRAS, 395, 64Google Scholar
Storchi-Bergmann, T., Wilson, A. S., & Baldwin, J. A. 1992, ApJ, 396, 45CrossRefGoogle Scholar
Storchi-Bergmann, T., González Delgado, R. M., Schmitt, H. R., Cid Fernandes, R., & Heckman, T., 2001, ApJ, 559, 147Google Scholar
Storchi-Bergmann, T., et al. 2007, ApJ, 670, 959Google Scholar
Storchi-Bergmann, T., et al. 2010, MNRAS 402, 819Google Scholar
Storchi-Bergmann, T.et al. 2012, ApJ, 755, 87Google Scholar
Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARAA, 43, 769Google Scholar