Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-28T19:18:09.679Z Has data issue: false hasContentIssue false

Feedback Regulated Turbulence, Magnetic Fields, and Star Formation Rates in Galactic Disks

Published online by Cambridge University Press:  12 September 2016

Chang-Goo Kim
Affiliation:
Department of Astrophysical Sciences, Princeton University 4 Ivy Lane, Princeton, New Jersey, USA08544 email: [email protected], [email protected]
Eve C. Ostriker
Affiliation:
Department of Astrophysical Sciences, Princeton University 4 Ivy Lane, Princeton, New Jersey, USA08544 email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use three-dimensional magnetohydrodynamic (MHD) simulations to investigate the quasi-equilibrium states of galactic disks regulated by star formation feedback. We incorporate effects from massive-star feedback via time-varying heating rates and supernova (SN) explosions. We find that the disks in our simulations rapidly approach a quasi-steady state that satisfies vertical dynamical equilibrium. The star formation rate (SFR) surface density self-adjusts to provide the total momentum flux (pressure) in the vertical direction that matches the weight of the gas. We quantify feedback efficiency by measuring feedback yields, ηcPcSFR (in suitable units), for each pressure component. The turbulent and thermal feedback yields are the same for HD and MHD simulations, ηth ~ 1 and ηturb ~ 4, consistent with the theoretical expectations. In MHD simulations, turbulent magnetic fields are rapidly generated by turbulence, and saturate at a level corresponding to ηmag,t ~ 1. The presence of magnetic fields enhances the total feedback yield and therefore reduces the SFR, since the same vertical support can be supplied at a smaller SFR. We suggest further numerical calibrations and observational tests in terms of the feedback yields.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bigiel, F., Leroy, A. K., Walter, F., Brinks, E., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2846 CrossRefGoogle Scholar
Kennicutt, R. C. Jr. 1998, ApJ, 498, 541 Google Scholar
Kim, C.-G., Kim, W.-T., & Ostriker, E. C. 2011, ApJ, 743, 25 Google Scholar
Kim, C.-G., Ostriker, E. C., & Kim, W.-T. 2013, ApJ, 776, 1 Google Scholar
Kim, C.-G. & Ostriker, E. C. 2015, ApJ submitted Google Scholar
Krumholz, M. R., Dekel, A., & McKee, C. F. 2012, ApJ, 745, 69 Google Scholar
Leroy, A. K., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2782 Google Scholar
Ostriker, E. C., McKee, C. F., & Leroy, A. K. 2010, ApJ, 721, 975 Google Scholar
Ostriker, E. C. & Shetty, R. 2011, ApJ, 731, 41 Google Scholar
Padoan, P., Federrath, C., Chabrier, G., Evans, N. J. II, Johnstone, D., Jrgensen, J. K., McKee, C. F., & Nordlund, , 2014, Protostars and Planets VI, 77Google Scholar
Schmidt, M. 1959, ApJ, 129, 243 Google Scholar
Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., & Simon, J. B. 2008, ApJS, 178, 137 CrossRefGoogle Scholar