Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T21:01:57.211Z Has data issue: false hasContentIssue false

Feedback and Outflows

Published online by Cambridge University Press:  21 March 2013

Norman Murray*
Affiliation:
Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George st., Toronto, ON, M5S 3H8, Canada email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The low stellar and gas mass fractions, low galaxy-wide star formation rates (relative to galactic dynamical times) and observations of rapid outflows from galaxies, all suggest that stars and active galactic nuclei violently alter the state of the interstellar and even inter-halo gas in galaxies. I argue that the low galaxy wide star formation rates are not the result of turbulent suppression of star formation on small scale, but rather the result of a balance between dynamical pressure and the force (or rate of momentum deposition) provided by stellar feedback, either in the form of radiation pressure or by supernovae. Galaxy scale winds can also be driven by feedback, either from stars or active galactic nuclei, although the exact mechanisms involved are still not well determined.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Agertz, O., Kravtsov, A. V., Leitner, S. N., & Gnedin, N. Y. 2012, arXiv:1210.4957Google Scholar
Behroozi, P. S., Conroy, C., & Wechsler, R. H. 2010, ApJ, 717, 379Google Scholar
Benjamin, R. A., Churchwell, E., Babler, B. L., et al. 2003, PASP, 115, 953CrossRefGoogle Scholar
Bigiel, F., Leroy, A., Walter, F., et al. 2008, AJ, 136, 2846CrossRefGoogle Scholar
Bournaud, F., Elmegreen, B. G., Teyssier, R., Block, D. L., & Puerari, I. 2010, MNRAS, 409, 1088Google Scholar
Cavagnolo, K. W., Donahue, M., Voit, G. M., & Sun, M. 2008, ApJL, 683, L107CrossRefGoogle Scholar
Dai, X., Bregman, J. N., Kochanek, C. S., & Rasia, E. 2010, ApJ, 719, 119Google Scholar
Dunkley, J., Komatsu, E., Nolta, M. R., et al. 2009, ApJS, 180, 306Google Scholar
Faucher-Giguère, C.-A. & Quataert, E. 2012, MNRAS, 425, 605CrossRefGoogle Scholar
Grabelsky, D. A., Cohen, R. S., Bronfman, L., Thaddeus, P., & May, J. 1987, ApJ, 315, 122Google Scholar
Heckman, T. M., Armus, L., & Miley, G. K. 1990, ApJS, 74, 833CrossRefGoogle Scholar
Heyer, M., Krawczyk, C., Duval, J., & Jackson, J. M. 2009, ApJ, 699, 1092CrossRefGoogle Scholar
Hopkins, P. F., Quataert, E., & Murray, N. 2012, MNRAS, 421, 3522Google Scholar
Hopkins, P. F., Quataert, E., & Murray, N. 2011, MNRAS, 417, 950CrossRefGoogle Scholar
Kennicutt, R. C. Jr., 1998, ApJ, 498, 541Google Scholar
Krumholz, M. R. & McKee, C. F. 2005, ApJ, 630, 250Google Scholar
Leauthaud, A., George, M. R., Behroozi, P. S., et al. 2012, ApJ, 746, 95Google Scholar
Leauthaud, A., Tinker, J., Bundy, K., et al. 2012, ApJ, 744, 159CrossRefGoogle Scholar
Lee, E. J., Murray, N., & Rahman, M. 2012, ApJ, 752, 146Google Scholar
Mooney, T. J. & Solomon, P. M. 1988, ApJL, 334, L51Google Scholar
Murray, N. 2011, ApJ, 729, 133CrossRefGoogle Scholar
Murray, N., Ménard, B., & Thompson, T. A. 2011, ApJ, 735, 66Google Scholar
Murray, N., Quataert, E., & Thompson, T. A. 2010, ApJ, 709, 191CrossRefGoogle Scholar
Murray, N., Quataert, E., & Thompson, T. A. 2005, ApJ, 618, 569CrossRefGoogle Scholar
Murray, N. & Rahman, M. 2010, ApJ, 709, 424CrossRefGoogle Scholar
Ostriker, E. C. & Shetty, R. 2011, ApJ, 731, 41Google Scholar
Rahman, M., Moon, D.-S., & Matzner, C. D. 2011, ApJL, 743, L28Google Scholar
Rahman, M. & Murray, N. 2010, ApJ, 719, 1104Google Scholar
Sturm, E., González-Alfonso, E., Veilleux, S., et al. 2011, ApJL, 733, L16Google Scholar
Thompson, T. A., Quataert, E., & Murray, N. 2005, ApJ, 630, 167Google Scholar
Trager, S. C., Faber, S. M., Worthey, G., & González, J. J. 2000, AJ, 119, 1645CrossRefGoogle Scholar