Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T23:40:47.678Z Has data issue: false hasContentIssue false

Fast Radio Transients: From Pulsars to Fast Radio Bursts

Invited talk

Published online by Cambridge University Press:  29 August 2019

B. W. Stappers
Affiliation:
Jodrell Bank Centre for Astrophysics, University of Manchester, UK email: [email protected]
M. Caleb
Affiliation:
Jodrell Bank Centre for Astrophysics, University of Manchester, UK email: [email protected]
L. N. Driessen
Affiliation:
Jodrell Bank Centre for Astrophysics, University of Manchester, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The radio sky is full of transients, their time-scales ranging from nanoseconds to decades. Recent developments in technology sensitivity and computing capabilities have opened up the short end of that range, and are revealing a plethora of new phenomenologies. Studies of radio transients were previously restricted to analyses of archived data, but are now including real-time analyses. We focus here on Fast Radio Bursts, discuss and compare the properties of the population, and describe what is to date the only known repeating Fast Radio Burst and its host galaxy. We also review what will be possible with the new instrumentation coming online.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bannister, K., et al. 2017, ApJ, 841, L12CrossRefGoogle Scholar
Bassa, C. G., et al. 2017, ApJ, 843, L8CrossRefGoogle Scholar
Bhandari, S., et al. 2018, MNRAS, 475, 1427CrossRefGoogle Scholar
Burke-Spolaor, S., & Bannister, K. W. 2014, ApJ, 792, 19CrossRefGoogle Scholar
Caleb, M., et al. 2017, MNRAS, 468, 3746CrossRefGoogle Scholar
Champion, D. J., et al. 2016, MNRAS, 460, 30CrossRefGoogle Scholar
Chatterjee, S., et al. 2017, Nature, 541, 58CrossRefGoogle Scholar
Foster, G., et al. 2018, MNRAS, 474, 3847CrossRefGoogle Scholar
Hardy, L. K., et al. 2015, MNRAS, 454, 4316CrossRefGoogle Scholar
Johnston, S., et al. 2017, MNRAS, 465, 2143CrossRefGoogle Scholar
Karastergiou, A., et al. 2015, MNRAS, 452, 1254CrossRefGoogle Scholar
Keane, E. F., et al. 2016, Nature, 530, 453CrossRefGoogle Scholar
Law, C. J., et al. 2015, ApJ, 807, L16CrossRefGoogle Scholar
Lorimer, D. R., et al. 2007, Science, 318, 777CrossRefGoogle Scholar
Macquart, J.-P., & Johnston, S. 2015, MNRAS, 451, 3278CrossRefGoogle Scholar
Marcote, B., et al. 2017, ApJ, 834, 8CrossRefGoogle Scholar
Masui, K., et al. 2015, Nature, 528, 523CrossRefGoogle Scholar
Michilli, D., et al. 2018, Nature, 553, 182CrossRefGoogle Scholar
Petroff, E., et al. 2014, ApJ, 789, L26CrossRefGoogle Scholar
Petroff, E., et al. 2015, MNRAS, 454, 457CrossRefGoogle Scholar
Petroff, E., et al. 2016, PASA, 33, 45CrossRefGoogle Scholar
Rane, A., & Lorimer, D. 2017, JApA, 38, 55Google Scholar
Ravi, V., & Shannon, R. M. 2015, ApJ, 799, L5CrossRefGoogle Scholar
Shannon, R. M., & Ravi, V. 2017, ApJ, 837, L22CrossRefGoogle Scholar
Scholz, P., et al. 2016, ApJ, 833, 177CrossRefGoogle Scholar
Spitler, L. G., et al. 2014, ApJ, 780, L3CrossRefGoogle Scholar
Spitler, L., et al. 2016, Nature, 531, 202CrossRefGoogle Scholar
Tendulkar, S. P., et al. 2017, ApJ, 834, L7CrossRefGoogle Scholar
Thornton, D., et al. 2013, Science, 341, 53CrossRefGoogle Scholar
Tingay, S. J., et al. 2015, AJ, 150, 199CrossRefGoogle Scholar
Vander Wiel, S. et al. 2016, arXiv:1612.00896Google Scholar
Wayth, R. B., et al. 2011, ApJ, 735, 97CrossRefGoogle Scholar
Williams, P. K. G. & Berger, E. 2016, ApJ, 821, L22CrossRefGoogle Scholar
Yao, J. M., Manchester, R. N., & Wang, N. 2017, ApJ, 835, 29CrossRefGoogle Scholar