Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T14:35:42.740Z Has data issue: false hasContentIssue false

Extremely metal-poor stars in dwarf galaxies

Published online by Cambridge University Press:  09 March 2010

Anna Frebel
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA email: [email protected]
Joshua D. Simon
Affiliation:
Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101, USA email: [email protected]
Evan Kirby
Affiliation:
California Institute of Technology, Pasadena, CA 91106, USA email [email protected]
Marla Geha
Affiliation:
Astronomy Department, Yale University, New Haven, CT 06520, USA email [email protected]
Beth Willman
Affiliation:
Haverford College, Haverford, PA 19041, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present Keck/HIRES spectra of six metal-poor stars in two of the ultra-faint dwarf galaxies orbiting the Milky Way, Ursa Major II and Coma Berenices, and a Magellan/MIKE spectrum of a star in the classical dwarf spheroidal galaxy (dSph) Sculptor. Our data include the first high-resolution spectroscopic observations of extremely metal-poor stars ([Fe/H] < −3.0) not belonging to the Milky Way (MW) stellar halo field population. We obtain abundance measurements and upper limits for up to 26 elements between carbon and europium. The stars span a range of −3.8 < [Fe/H] < −2.3, with the ultra-faints having large spreads in Fe. A comparison with MW halo stars of similar metallicity reveals substantial agreement between the abundance patterns of the ultra-faint dwarf galaxies and Sculptor and the MW halo for the light, α and iron-peak elements (C to Zn). This agreement contrasts with the results of earlier studies of more metal-rich stars (−2.5 ≲[Fe/H]≲ −1.0) in more luminous dwarfs, which found significant abundance discrepancies with respect to the MW halo data. The abundances of neutron-capture elements (Sr to Eu) in all three galaxies are extremely low, consistent with the most metal-poor halo stars, but not with the typical halo abundance pattern at [Fe/H]≳ −3.0. Our results are broadly consistent with a galaxy formation model which predicts that massive dwarf galaxies are the source of the metal-rich component ([Fe/H]≳ −2.5) of the MW inner halo, but we propose that dwarf galaxies similar to the dSphs are the primary contributors to the metal-poor end of the metallicity distribution of the MW outer halo.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bromm, V. & Larson, R. B. 2004, ARAA, 42, 79CrossRefGoogle Scholar
Cayrel, R. et al. 2004, A&A, 416, 1117Google Scholar
Cohen, J. G. & Huang, W. 2009, ApJ, 701, 1053CrossRefGoogle Scholar
Frebel, A. et al. 2005, Nature, 434, 871CrossRefGoogle Scholar
Frebel, A., Simon, J. D., Geha, M., & Willman, B. 2010a, ApJ, 708, 560CrossRefGoogle Scholar
Frebel, A., Kirby, E., & Simon, J. D. 2010b, Nature in press, astro-ph/0912.4734Google Scholar
Fulbright, J. P., Rich, R. M., & Castro, S. 2004, ApJ, 612, 447CrossRefGoogle Scholar
Helmi, A. et al. 2006, ApJ, 651, L121CrossRefGoogle Scholar
Johnston, K. V. et al. 2008, ApJ, 689, 936CrossRefGoogle Scholar
Kirby, E. N. et al. 2009, ApJ, 705, 328CrossRefGoogle Scholar
Kirby, E. N., Simon, J. D., Geha, M., Guhathakurta, P., & Frebel, A. 2008, ApJ, 685, L43CrossRefGoogle Scholar
Koch, A., McWilliam, A., Grebel, E. K., Zucker, D. B., & Belokurov, V. 2008, ApJ, 688, L13CrossRefGoogle Scholar
Norris, J. E. et al. 2008, ApJ, 689, L113CrossRefGoogle Scholar
Robertson, B., Bullock, J. S., Font, A. S., Johnston, K. V. & Hernquist, L. 2005, ApJ, 632, 872CrossRefGoogle Scholar
Schörck, T. et al. 2009, A&A, 507, 817Google Scholar
Searle, L. & Zinn, R. 1978, ApJ, 225, 357CrossRefGoogle Scholar
Simon, J. D. & Geha, M. 2007, ApJ, 670, 313CrossRefGoogle Scholar
Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371Google Scholar