Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T02:05:00.390Z Has data issue: false hasContentIssue false

Extreme variations in star formation activity in the first galaxies

Published online by Cambridge University Press:  10 June 2020

Christian Binggeli
Affiliation:
Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden email: [email protected]
Erik Zackrisson
Affiliation:
Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden email: [email protected]
Xiangcheng Ma
Affiliation:
Department of Astronomy, 501 Campbell Hall 3411, University of California, Berkeley, CA94720-3411, USA
Akio K. Inoue
Affiliation:
Department of Environmental Science and Technology, Faculty of Design Technology, Osaka Sangyo University, 3-1-1, Nagaito, Daito, Osaka574-8530, Japan
Anton Vikaeus
Affiliation:
Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden email: [email protected]
Takuya Hashimoto
Affiliation:
Department of Environmental Science and Technology, Faculty of Design Technology, Osaka Sangyo University, 3-1-1, Nagaito, Daito, Osaka574-8530, Japan National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo181-8588, Japan
Ken Mawatari
Affiliation:
Department of Environmental Science and Technology, Faculty of Design Technology, Osaka Sangyo University, 3-1-1, Nagaito, Daito, Osaka574-8530, Japan Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba277-8582, Japan
Ikkoh Shimizu
Affiliation:
Department of Environmental Science and Technology, Faculty of Design Technology, Osaka Sangyo University, 3-1-1, Nagaito, Daito, Osaka574-8530, Japan Theoretical Astrophysics, Department of Earth & Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka560-0043, Japan
Philip F. Hopkins
Affiliation:
TAPIR, MC 350-17, California Institute of Technology, Pasadena, CA91125, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently, spectroscopic detections of O[III] 88 μm and Ly-α emission lines from the z ≍ 9.1 galaxy MACS1149-JD1 have been presented, and with these, some interesting properties of this galaxy were uncovered. One such property is that MACS1149-JD1 exhibits a significant Balmer break at around rest-frame 4000 Å, which may indicate that the galaxy has experienced large variations in star formation rate prior to z ∼ 9, with a rather long period of low star formation activity. While some simulations predict large variations in star formation activity in high-redshift galaxies, it is unclear whether the simulations can reproduce the kind of variations seen in MACS1149-JD1. Here, we utilize synthetic spectra of simulated galaxies from two simulation suites in order to study to what extent these can accurately reproduce the spectral features (specifically the Balmer break) observed in MACS1149-JD1. We show that while the simulations used in this study produce galaxies with varying star formation histories, galaxies such as MACS1149-JD1 would be very rare in the simulations. In principle, future observations with the James Webb Space Telescope may tell us if MACS1149-JD1 represents something rare, or if such galaxies are more common than predicted by current simulations.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bouwens, R. J., Illingworth, G. D., Oesch, P. A., Labbé, I., van Dokkum, P. G., Trenti, M., Franx, M., Smit, R., et al. 2014, ApJ, 793, 11510.1088/0004-637X/793/2/115CrossRefGoogle Scholar
Camps, P. & Baes, M. 2015, Astronomy and Computing, 9, 2010.1016/j.ascom.2014.10.004CrossRefGoogle Scholar
Ferland, G. J., Porter, R. L., van Hoof, P. A. M., Williams, R. J. R., Abel, N. P., Lykins, M. L., Shaw, G., Henney, W. J., et al. 2013, Rev. Mexicana Astron. Astrofis., 49, 137Google Scholar
Hashimoto, T., Laporte, N., Mawatari, K., Ellis, R. S., Inoue, A. K., Zackrisson, E., Roberts-Borsani, G., Zheng, W., et al. 2018, Nature, 557, 39210.1038/s41586-018-0117-zCrossRefGoogle Scholar
Hopkins, P. F., Wetzel, A., Kereš, D., Faucher-Giguère, C.-A., Quataert, E., Boylan-Kolchin, M., Murray, N., Hayward, C. C., et al. 2018, MNRAS, 480, 80010.1093/mnras/sty1690CrossRefGoogle Scholar
Katz, H., Laporte, N., Ellis, R. S., Devriendt, J., & Slyz, A. 2018, ArXiv e-prints, 1809,arXiv:1809.07210Google Scholar
Kimm, T., Cen, R., Devriendt, J., Dubois, Y., & Slyz, A. 2015, MNRAS, 451, 290010.1093/mnras/stv1211CrossRefGoogle Scholar
Leitherer, C., Schaerer, D., Goldader, J. D., Delgado, R. M. G., Robert, C., Kune, D. F., de Mello, D. F., Devost, D., et al. 1999, ApJS, 123, 310.1086/313233CrossRefGoogle Scholar
Ma, X., Hopkins, P. F., Garrison-Kimmel, S., Faucher-Giguère, C.-A., Quataert, E., Boylan-Kolchin, M., Hayward, C. C., Feldmann, R., et al. 2018, MNRAS, 478, 169410.1093/mnras/sty1024CrossRefGoogle Scholar
Ma, et al. 2019, MNRAS, 487, 1864Google Scholar
Oesch, P. A., Brammer, G., van Dokkum, P. G., Illingworth, G. D., Bouwens, R. J., Labbé, I., Franx, M., Momcheva, I., et al. 2016, ApJ, 819, 12910.3847/0004-637X/819/2/129CrossRefGoogle Scholar
Pei, Y. C. 1992, ApJ, 395, 13010.1086/171637CrossRefGoogle Scholar
Raiter, A., Schaerer, D., & Fosbury, R. A. E. 2010, A&A, 523, A64Google Scholar
Shimizu, I., Inoue, A. K., Okamoto, T., & Yoshida, N. 2016, MNRAS, 461, 356310.1093/mnras/stw1423CrossRefGoogle Scholar
Trebitsch, M., Blaizot, J., Rosdahl, J., Devriendt, J., & Slyz, A. 2017, MNRAS, 470, 22410.1093/mnras/stx1060CrossRefGoogle Scholar
Vázquez, G. A. & Leitherer, C. 2005, ApJ, 621, 69510.1086/427866CrossRefGoogle Scholar
Weingartner, J. C. & Draine, B. T. 2001, ApJ, 548, 29610.1086/318651CrossRefGoogle Scholar
Zackrisson, E., Rydberg, C.-E., Schaerer, D., Östlin, G., & Tuli, M. 2011, ApJ, 740, 1310.1088/0004-637X/740/1/13CrossRefGoogle Scholar