Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T11:43:57.677Z Has data issue: false hasContentIssue false

Extragalactic jets of broad absorption line (BAL) quasars

Published online by Cambridge University Press:  24 March 2015

M. Kunert-Bajraszewska
Affiliation:
Toruń Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, NCU, Grudziadzka 5, 87-100 Toruń, Poland email: [email protected]
M. Cegłowski
Affiliation:
Toruń Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, NCU, Grudziadzka 5, 87-100 Toruń, Poland email: [email protected]
C. Roskowiński
Affiliation:
Toruń Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, NCU, Grudziadzka 5, 87-100 Toruń, Poland email: [email protected]
M. Gawroński
Affiliation:
Toruń Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, NCU, Grudziadzka 5, 87-100 Toruń, Poland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fast outflows of the ionized plasma, probably lunched in proximity of Supermassive Black Hole, are responsible for blue-shifted Broad Absorption Lines (BALs) in quasar spectrum. Outflows together with powerful jets produced in AGN are important feedback processes. Therefore, understanding physics behind BAL outflows might be a key to comprehend Galaxy Evolution as a whole. Discovery of the existence of radio-loud BAL quasars gave us another opportunity to study the BAL phenomenon, this time on the ground on radio emission. The radio emission is an additional tool to understand the BAL quasars, their orientation and age, by the VLBI imaging (detection of radio jets and their direction, size determination), the radio-loudness parameter distribution and variability study.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bruni, G., Dallacasa, D., Mack, K.-H., et al. 2013, A&A, 554, 94Google Scholar
Cegłowski, M., Gawroński, M. P., & Kunert-Bajraszewska, M. 2013, A&A, 557, 75Google Scholar
Fanaroff, B. L. & Riley, J. M. 1974, MNRAS 167, 31PGoogle Scholar
Hayashi, T., Doi, A., & Nagai, H. 2013, ApJ, 772, 4Google Scholar
Kimball, A. E., Ivezić, Ž., Wiita, P. J., & Schneider, D. P. 2011, AJ, 141, 182CrossRefGoogle Scholar
Kunert-Bajraszewska, M., Gawroński, M. P., Labiano, A., & Siemiginowska, A. 2010a, MNRAS, 408, 2261Google Scholar
Kunert-Bajraszewska, M., Janiuk, A., Gawroński, M. P., & Siemiginowska, A. 2010b, ApJ, 718, 1345Google Scholar
Kunert-Bajraszewska, M. & Labiano, A. 2010, MNRAS, 408, 2279Google Scholar
Trump, J. R., et al. 2006, ApJS, 165, 1CrossRefGoogle Scholar
Weymann, R. J., Morris, S. L., Foltz, C. B., & Hewett, P. C. 1991, ApJ, 373, 23Google Scholar
White, R. L., Becker, R. H., Helfand, D. J., & Gregg, M. D. 1997, ApJ, 475, 479Google Scholar
Willott, C. J., Rawlings, S., Blundell, K. M., & Lacy, M. 1999, MNRAS, 309, 1017Google Scholar