No CrossRef data available.
Article contents
Extensive spectroscopic and photometric study of HD 25558, a long orbital-period binary with two SPB components
Published online by Cambridge University Press: 18 February 2014
Abstract
We carried out an extensive photometric and spectroscopic investigation of the SPB binary, HD 25558 (see Fig. 1 for the time and geographic distribution of the observations). The ~2000 spectra obtained at 13 observatories during 5 observing seasons, the ground-based multi-colour light curves and the photometric data from the MOST satellite revealed that this object is a double-lined spectroscopic binary with a very long orbital period of about 9 years. We determined the physical parameters of the components, and have found that both lie within the SPB instability strip. Accordingly, both components show line-profile variations consistent with stellar pulsations. Altogether, 11 independent frequencies and one harmonic frequency were identified in the data. The observational data do not allow the inference of a reliable orbital solution, thus, disentangling cannot be performed on the spectra. Since the lines of the two components are never completely separated, the analysis is very complicated. Nevertheless, pixel-by-pixel variability analysis of the cross-correlated line profiles was successful, and we were able to attribute all the frequencies to the primary or secondary component. Spectroscopic and photometric mode-identification was also performed for several of these frequencies of both binary components. The spectroscopic mode-identification results suggest that the inclination and rotation of the two components are rather different. While the primary is a slow rotator with ~6 d rotation period, seen at ~60° inclination, the secondary rotates fast with ~1.2 d rotation period, and is seen at ~20° inclination. Our spectropolarimetric measurements revealed that the secondary component has a magnetic field with at least a few hundred Gauss strength, while no magnetic field was detected in the primary.
The detailed analysis and results of this study will be published elsewhere.
Keywords
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 9 , Symposium S301: Precision Asteroseismology , August 2013 , pp. 491 - 492
- Copyright
- Copyright © International Astronomical Union 2014